Skip to main content

Advertisement

Log in

Systolic volume of hyperbolic manifolds and connected sums of manifolds

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

The systolic volume of a closed n-manifold M is defined as the optimal constant σ(M) satisfying the inequality vol(M, g) ≥ σ(M) sys(M, g)n between the volume and the systole of every metric g on M. First, we show that the systolic volume of connected sums of closed oriented essential manifolds is unbounded. Then, we prove that the systolic volume of every sequence of closed hyperbolic (three-dimensional) manifolds is also unbounded. These results generalize systolic inequalities on surfaces in two different directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babenko I. (1993). Asymptotic invariants of smooth manifolds. Russian Acad. Sci. Izv. Math. 41: 1–38

    Article  Google Scholar 

  2. Babenko I. (1995). Extremal problems in geometry, surgeries of manifolds and problems in group theory. Izv. Math. 59: 321–332

    Article  MATH  Google Scholar 

  3. Babenko I. (2004). Géométrie systolique des variétés de groupe fondamental Z2. Sémin. Théor. Spectr. Géom. 22: 25–52

    Google Scholar 

  4. Babenko I. (2006). Nature topologique des systoles unidimensionnelles. Enseign. Math. (2) 52(1–2): 109–142

    Google Scholar 

  5. Babenko I. and Balacheff F. (2005). Géométrie systolique des sommes connexes et des revêtements cycliques. Math. Ann. 333(1): 157–180

    Article  MATH  Google Scholar 

  6. Bangert V., Croke C., Ivanov S. and Katz M. (2007). Boundary case of equality in optimal Loewner-type inequalities. Trans. A.M.S. 359(1): 1–7

    Article  MATH  Google Scholar 

  7. Bangert V. and Katz M. (2003). Stable systolic inequalities and cohomology products, Comm. Pure Appl. Math. 56: 979–997

    Article  MATH  Google Scholar 

  8. Bangert V. and Katz M. (2004). An optimal Loewner-type systolic inequality and harmonic one-forms of constant norm. Comm. Anal. Geom. 12: 701–730

    Google Scholar 

  9. Besson, G., Courtois, G., Gallot, S.: Inégalités de Milnor-Wood géométriques, Prépublication de l’Institut Fourier, no. 666 (2005), available at http://www-fourier.ujf-grenoble.fr/cgi-bin/ envoips.pl?PS=PREP/ps/t666

  10. Boileau M. and Wang S.C. (1996). Non-zero degree maps and surface bundles over S 1. J. Diff. Geom. 43: 789–908

    MATH  Google Scholar 

  11. Brunnbauer, M.: Homological invariance for asymptotic invariants and systolic inequalities, preprint available at arXiv:math/0702789

  12. Burger M., Gelander T., Lubotzky A. and Mozes S. (2002). Counting hyperbolic manifolds. Geom. Funct. Anal. 12(6): 1161–1173

    Article  MATH  Google Scholar 

  13. Buser P. and Sarnak P. (1994). On the period matrix of a Riemann surface of large genus. With an appendix by J. H. Conway and N. J. A. Sloane. Invent. Math. 117: 27–56

    Article  MATH  Google Scholar 

  14. Croke C. and Katz M. (2003). Universal volume bounds in Riemannian manifolds. In: Yau, S.-T. (eds) Surveys in differential Geometry VIII, Lectures on Geometry and Topology held in honor of Calabi, Lawson, Siu and Uhlenbeck at Harvard University, May 3–5, 2002, pp 109–137. International Press, Somerville, MA

    Google Scholar 

  15. Dunfield N. (1999). Cyclic surgery, degrees of maps of character curves and volume rigidity for hyperbolic manifolds. Invent. Math. 136(3): 623–657

    Article  MATH  Google Scholar 

  16. Gromov M. (1981). Volume and bounded cohomology. Publ. IHES. 56: 213–307

    Google Scholar 

  17. Gromov M. (1983). Filling Riemannian manifolds. J. Differential Geom 18: 1–147

    MATH  Google Scholar 

  18. Gromov, M.: Systoles and intersystolic inequalities. In: Actes de la Table Ronde de Géométrie Différentielle (Luminy 1992), pp. 291–362. Séminaires et Congrès, 1. Soc. Math. France, Institut Henri Poincaré, Paris (1996)

  19. Guth, L.: Volumes of balls in large Riemannian manifolds, preprint available at arXiv:math.DG/ 0610212

  20. Ivanov S. and Katz M. (2004). Generalized degree and optimal Loewner-type inequalities. Israel J. Math. 141: 221–233

    MATH  Google Scholar 

  21. Katz, M., Rudyak, Yu.: Bounding volume by systoles of 3-manifolds, preprint available at arXiv:math.DG/0504008.

  22. Katz M. and Sabourau S. (2005). Entropy of systolically extremal surfaces and asymptotic bounds. Ergo. Th. Dynam. Sys. 25(4): 1209–1220

    Article  MATH  Google Scholar 

  23. Katz, M., Schaps, M., Vishne, U.: Logarithmic growth of systole of arithmetic Riemann surfaces along congruence subgroups, preprint available at arXiv:math.DG/0505007

  24. Massey, W.: Algebraic Topology: An Introduction, Graduate Texts in Mathematics, vol. 56. Springer-Verlag (1977)

  25. Milnor J. (1994). The Schläfli Differential Inequality, Collected papers, Vol. 1. Geometry. Publish or Perish, Inc., Houston, TX

    Google Scholar 

  26. Reznikov A. (1996). Rationality of secondary classes. J. Diff. Geom. 43(3): 674–692

    MATH  Google Scholar 

  27. Rong Y. (1995). Degree one maps of Seifert manifolds and a note on Seifert volume. Topology Appl. 64(2): 191–200

    Article  MATH  Google Scholar 

  28. Rudyak, Yu., Sabourau, S.: Systolic invariants of groups and 2-complexes via Grushko decomposition, to appear in Ann. Inst. Fourier.

  29. Sabourau S. (2006). Systolic volume and minimal entropy of aspherical manifolds. J. Diff. Geom. 74(1): 155–176

    MATH  Google Scholar 

  30. Soma T. (1998). Non-zero degree maps to hyperbolic 3-manifolds. J. Diff. Geom. 49(3): 517–546

    MATH  Google Scholar 

  31. Spanier E. (1966). Algebraic Topology. Springer-Verlag, New-York

    MATH  Google Scholar 

  32. Swan R. (1975). Thom’s theory of differential forms on simplicial sets. Topology 14(3): 271–273

    Article  MATH  Google Scholar 

  33. Thurston W. (1997). Three-dimensional geometry and topology. In: Levy, S. (eds) Princeton Mathematical Series, 35, Vol. 1, pp. Princeton Univ. Press, Princeton

    Google Scholar 

  34. Wang H.C. (1972). Topics on totally discontinuous groups. In: Boothby, W.M. and Weiss, G.L. (eds) Symmetric spaces. Pure and Appl. Math., vol. 8, pp 459–487. Dekker, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Sabourau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabourau, S. Systolic volume of hyperbolic manifolds and connected sums of manifolds. Geom Dedicata 127, 7–18 (2007). https://doi.org/10.1007/s10711-007-9146-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-007-9146-8

Keywords

Mathematics Subject Classification (2000)

Navigation