Skip to main content
Log in

Recurrent approach to Blaschke’s problem

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We have obtained a recurrence formula \(I_{n+3} = \frac{4(n+3)}{\pi(n+4)}VI_{n+1}\) for integro-geometric moments in the case of a circle with the area V, where \(I_n = \int \nolimits_{K \cap G}\sigma^{n}{\rm d} G\), while in the case of a convex domain K with the perimeter S and area V the recurrence formula

$$ I_{n+3} = \frac{8(n+3)V^2}{(n+1)(n+4)\pi}\Big[\frac{{\rm d} I_{n+1}}{{\rm d} V} - \frac{I_{n+1}}{S} \frac{{\rm d} S}{{\rm d} V} \Big] $$

holds, when curvature of the contour K(s) > 0,   n = 0,1,2,...

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Blaschke W.: Vorlesungen uber integralgeometrie, 1 Heft, 2 Aufl. Berlin (1936)

  2. Crofton M.W. (1877) Geometrical theorems related to mean values. Proc. Lond. Math. Soc. 8, 304–309

    Article  Google Scholar 

  3. Blaschke W. (1948) Eine isoperimetrische Eigenschaft des Kreises. Math. Z. B. 1, 52–57

    Google Scholar 

  4. Carleman T. (1919) Uber eine isoperimetrische Aufgabe und ihre physikalishen Anwendungen. Math. Z. B. 3, 1–8

    Article  MathSciNet  Google Scholar 

  5. Blaschke, W.: Vorlesungen uber Integralgeometrie. 3 Aufl. Berlin (1955)

  6. Voss K. (1982) Powers of chords for convex sets. Biom. J. 24(5): 513–516

    Article  MATH  MathSciNet  Google Scholar 

  7. Piefke F. (1979) The chord length distribution of the ellipse. Lietuvos Matem. Rink. 19(3): 45–53

    MATH  MathSciNet  Google Scholar 

  8. Sulanke R.(1961) Die Verteilung der Sechnenlangen an ebenen und raumlichen Figuren. Math. Nachr. 23(1): 51–74

    Article  MATH  MathSciNet  Google Scholar 

  9. Gečiauskas E. (1994) On the second moment in Blaschke’s problem. Lith. Math. J. 34, 122–125

    Article  Google Scholar 

  10. Gečiauskas E. (1997) Fragments related with Blaschke’s problem. Lith. Math. J. 37, 246–248

    Article  Google Scholar 

  11. Mathai A.M., Pederzoli G. (1997) Random points with reference to a circle revisited. Rendiconti del circolo matematico di Palermo, Serie II, Suppl. 50, 235–258

    MathSciNet  Google Scholar 

  12. Gečiauskas E. (1968) The method of the integral geometry for finding the distribution functions of chord length of an oval and of distance in an oval. Lith. Math. J. 8, 237–241

    Google Scholar 

  13. Kendall, M.G., Moran, P.A.P.: Geometric Probability. Moscow (1972) (in Russian)

  14. Santalo, L.A.: Introduction to Integral Geometry. Moscow (1956) (in Russian)

  15. Enns E.G., Ehlers P.F., Stuhr S. (1981) Every body has its moments. Statist. Distrib. Sci. Work 5, 387–396

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gečiauskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gečiauskas, E. Recurrent approach to Blaschke’s problem. Geom Dedicata 121, 9–18 (2006). https://doi.org/10.1007/s10711-006-9080-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-006-9080-1

Keywords

Mathematics Subject Classification (2000)

Navigation