Skip to main content
Log in

Groupes Moyennables, Dimension Topologique Moyenne et sous-décalages

Amenable Groups, mean Topological Dimension and Subshifts

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let G be an infinite countable residually finite amenable group. In this paper we construct a continuous action of G on a compact metrisable space X such that the dynamical system (X, G) cannot be embedded in the G-shift on [0,1]G. This result generalizes a construction due to E. Lindenstrauss and B. Weiss (Mean topological dimension, Israel J. Math. 115 (2000), 1–24) for \(G = \mathbb{Z}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslander, J. Minimal flows and their extensions. North-Holland Math. Stud. 153, Elsevier Science Publishers B.V., (1988).

  2. Coornaert, M. Dimension topologique et systèmes dynamiques, à paraître dans les Cours spécialisés de la Société Mathématique de France.

  3. Coornaert, M., Krieger, F. Mean topological dimension for actions of discrete amenable groups. Discrete Contin. Dyn. Syst. 13(3), 779–793 August (2005).

    Google Scholar 

  4. Følner E. (1955). On groups with full Banach mean value. Math. Scand. 3, 245–254

    Google Scholar 

  5. Greenleaf, F.P. Invariant Means on Topological Groups and their Applications. Van Nostrand, (1969).

  6. Gromov M. (1999). Topological invariants of dynamical systems and spaces of holomorphic maps, Part I. Math. Phys. Anal. Geom. 2, 323–415

    Article  MATH  MathSciNet  Google Scholar 

  7. Jaworski, A. Ph.D thesis of Alan Jaworski, University of Maryland, (1974).

  8. Kakutani S. (1968). A proof of Beboutov’s theorem. J. differ. equations 4, 194–201

    Article  MATH  MathSciNet  Google Scholar 

  9. Krieger, F. Le lemme d’Ornstein-Weiss d’après Gromov, à paraître dans “Recent progress in dynamics”. In: Hasselblatt, B. (ed.) Cambridge University Press.

  10. Lindenstrauss E., Weiss B. (2000). Mean topological dimension. Israel J. Math. 115, 1–24

    MATH  MathSciNet  Google Scholar 

  11. Paterson A. (1988). Amenability, Vol. 29, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Krieger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krieger, F. Groupes Moyennables, Dimension Topologique Moyenne et sous-décalages. Geom Dedicata 122, 15–31 (2006). https://doi.org/10.1007/s10711-006-9071-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-006-9071-2

Classification mathématique par sujets (2000)

Keywords

Navigation