Skip to main content
Log in

Convexes Hyperboliques et Quasiisométries

Hyperbolic Convexes and Quasiisometries

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

For any m ≥ 3, we construct properly convex open sets Ω in the real projective space \(\mathbb{P}^m\) whose Hilbert metric is Gromov hyperbolic but is not quasiisometric to the hyperbolic space \(\mathbb{H}^m\). We show that such examples cannot exist for m = 2.

Some of our examples are divisible, i.e. there exists a discrete group Г of projective transformations preserving Ω with a compact quotient Г\Ω. The open set Ω is strictly convex but the group Г is not isomorphic to any cocompact lattice in the isometry group of \(\mathbb{H}^m\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahlfors, L. Lectures on Quasiconformal Mappings, Wadthworth (1966)

  2. Ahlfors L., Beurling A. (1956) The boundary correspondance under quasiconformal mappings, Acta Math. 96, 125–142

    Article  MATH  MathSciNet  Google Scholar 

  3. Benoist, Y. Convexes divisibles I, in Algebraic Groups and Arithmetics. Tata Inst. Fund. Res. Stud. in Math, 17, pp. 339–374. Narosa (2004)

  4. Benoist Y. (2003) Convexes divisibles II. Duke Math. J. 120, 97–120

    Article  MATH  MathSciNet  Google Scholar 

  5. Benoist, Y. Convexes divisibles III, Comp. Rend. Ac. Sc. 332, 387–390 (2001); et Ann. Sci. ENS (à paraître).

  6. Benoist, Y. Convexes divisibles IV. Invent. Math. (à paraître).

  7. Benoist Y. (2004) Convexes hyperboliques et fonctions quasisymétriques. Publ. Math. IHES 97, 181–237

    Article  Google Scholar 

  8. Benzecri J.P. (1960) Sur les variétés localement affines et localement projectives. Bull. Soc. Math. France 88, 229–332

    MATH  MathSciNet  Google Scholar 

  9. Bonk, M., Heinonen, J., Koskela, P. Uniformizing Gromov Hyperbolic Spaces. Asterisque 270 (2001)

  10. Bonk M., Kleiner B. (2002) Quasisymmetric parametrizations of two-dimensional metric spheres. Invent. Math. 150, 127–183

    Article  MATH  MathSciNet  Google Scholar 

  11. Bourbaki, N. Groupes et algèbres de Lie ch. 4,5 et 6, Masson (1981).

  12. Bourdon M., Pajot H. (2003) Cohomologie ℓ p et espaces de Besov. J.Reine Angew. Math. 558, 85–108

    MATH  MathSciNet  Google Scholar 

  13. Cannon J., Cooper D. (1992) A characterization of cocompact hyperbolic and finite-volume hyperbolic groups in dimension three. Trans. Amer. Math. Soc. 330, 419–431

    Article  MATH  MathSciNet  Google Scholar 

  14. Colbois B., Vernicos C., Verovic P. (2004) L’aire des triangles idéaux en géométrie de Hilbert. Enseign. Math. 50, 203–237

    MATH  MathSciNet  Google Scholar 

  15. Colbois B., Verovic P. (2004) Hilbert geometry for strictly convex domains. Geom. Dedicata 105, 29–42

    Article  MATH  MathSciNet  Google Scholar 

  16. Coornaert, M., Papadopoulos, A. Symbolic Dynamics and Hyperbolic Groups, LNM 1539 Springer (1993).

  17. Davis, M. Non positive curvature and reflection groups, Handbook of Geometry and Topology 373–424 (2002)

  18. Davis M., Moussong G. (1998) Notes on non positively curved polyhedra. Bolyai Soc. Math. Stud. 8, 11–94

    MathSciNet  Google Scholar 

  19. Farb B. (1997) The quasi-isometry classification of lattices in semisimple Lie groups. Math. Res. Lett. 4, 705–717

    MATH  MathSciNet  Google Scholar 

  20. Ghys, E., de la Harpe, P. Sur les Groupes hyperboliques D’après Mikhael Gromov, PM 83. Birkhaüser (1990).

  21. Goldman, W. Projective Geometry, Notes de cours à Maryland (1988)

  22. Gromov, M. Infinite Groups as Geometric Objects, pp. 385–392. Proc. Int. Cong. Math. Warsaw PWN (1984)

  23. Gromov, M. Hyperbolic groups. In: Essays in Group Theory, pp. 75–263. MSRI Publ. 8 (1987)

  24. Heinonen, J. Lectures on Analysis on Metric Spaces. Springer (2001).

  25. Januszkiewicz T., Swiatkowski J. (2003) Hyperbolic Coxeter groups of large dimension. Comm. Math. Helv. 78, 555–583

    Article  MATH  MathSciNet  Google Scholar 

  26. Johnson, D., Millson, J. Deformation spaces associated to compact hyperbolic manifolds. In Discrete subgroups. PM 67 p. 48–106. Birkhaüser (1984)

  27. Kac V., Vinberg E. (1967) Quasihomogeneous cones. Math. Notes 1, 231–235

    MathSciNet  Google Scholar 

  28. Kapovich, M. Hyperbolic Manifolds and Discrete Groups, PM 183. Birkhäuser (2001)

  29. Karlsson A., Noskov G. (2002) The Hilbert metric and Gromov hyperbolicity. l’Ens. Math 48, 73–89

    MATH  MathSciNet  Google Scholar 

  30. Koszul J.L. (1968) Déformation des connexions localement plates. Ann. Inst. Fourier 18, 103–114

    MATH  MathSciNet  Google Scholar 

  31. Mostow, G. Quasiconformal mappings in n-space and rigidity of hyperbolic space forms, Publ. Math. IHES 33 (1968).

  32. Moussong G. (1989) Some non symmetric manifolds. Coll. Math. Soc. J. Bolyai 56, 535–546

    MathSciNet  Google Scholar 

  33. Paulin F. (1996) Un groupe hyperbolique est déterminé par son bord. J. London Math. Soc. 54, 50–74

    MATH  MathSciNet  Google Scholar 

  34. Tukia P. (1981) A quasiconformal group not isomorphic to a Möbius group. Ann. Acad. Sci. Fenn. 6, 149–160

    MathSciNet  MATH  Google Scholar 

  35. Tukia P. (1985) Quasiconformal extension of quasisymmetric mappings compatible with a Möbius group. Acta Math. 154, 153–193

    Article  MATH  MathSciNet  Google Scholar 

  36. Tukia P. (1986) On quasiconformal groups. J. Anal. Math. 46, 318–346

    Article  MATH  MathSciNet  Google Scholar 

  37. Tukia P., Väisälä J. (1980) Quasisymmetric embeddings of metric spaces. Ann. Acad. Sci. Fenn. 5, 97–114

    MATH  Google Scholar 

  38. Vinberg E. (1971) Discrete linear groups that are generated by reflections. Izv. Akad. Nauk SSSR 35, 1072–1112

    MATH  MathSciNet  Google Scholar 

  39. Vinberg, E. Geometry II. Encyclopedia of Math. Sci. 29 Springer (1993).

  40. Vinberg E. (1985) The absence of crystallographic groups of reflections in Lobachevsky spaces of large dimension. Trans. Moscow Math. Soc. 47, 75–112

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yves Benoist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benoist, Y. Convexes Hyperboliques et Quasiisométries. Geom Dedicata 122, 109–134 (2006). https://doi.org/10.1007/s10711-006-9066-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-006-9066-z

Keywords

Mathematics Subject Classifications (2000)

Navigation