Skip to main content
Log in

Finite Subgroups of Arithmetic Lattices in U (2, 1)

  • Original Article
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

The principle result of this article is the determination of the possible finite subgroups of arithmetic lattices in U (2, 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aljadeff E., Sonn J. (1998) Bounds on orders of finite subgroups of PGL n (K). J. Algebra 210(1): 352–360

    Article  MATH  MathSciNet  Google Scholar 

  2. Amitsur S.A. (1955) Finite subgroups of division rings. Trans. Amer. Math. Soc. 80, 361–386

    Article  MATH  MathSciNet  Google Scholar 

  3. Benson C.T., Grove L.C. (1970) Generators and relations for Coxeter groups. Proc. Amer. Math. Soc. 24, 545–547

    Article  MATH  MathSciNet  Google Scholar 

  4. Boothby W.M., Wang H.-C. (1965) On the finite subgroups of connected Lie groups. Comment. Math. Helv. 39, 281–294

    Article  MATH  MathSciNet  Google Scholar 

  5. Brauer R., Feit W. (1966) An analogue of Jordan’s theorem in characteristic p. Ann. of Math. 84(2): 119–131

    Article  MathSciNet  Google Scholar 

  6. Broué M., Malle G., Rouquier R. (1998) Complex reflection groups, braid groups, Hecke algebras. J. Reine Angew. Math. 500, 127–190

    MATH  MathSciNet  Google Scholar 

  7. Coxeter H.S.M. (1974) Regular Complex Polytopes. Cambridge University Press, London

    MATH  Google Scholar 

  8. Du Val P. (1964) Homographies, Quaternions and Rotations. Oxford Mathematical Monographs. Clarendon Press, Oxford

    Google Scholar 

  9. Falbel E., Paupert J. (2004) Fundamental domains for finite subgroups in U(2) and configurations of Lagrangians. Geom. Dedicata 109, 221–238

    Article  MATH  MathSciNet  Google Scholar 

  10. Feit W. (1997) Finite linear groups and theorems of Minkowski and Schur. Proc. Amer. Math. Soc. 125(5): 1259–1262

    Article  MATH  MathSciNet  Google Scholar 

  11. Friedland S. (1997) The maximal orders of finite subgroups in GL n (Q). Proc. Amer. Math. Soc. 125(12): 3519–3526

    Article  MATH  MathSciNet  Google Scholar 

  12. Harris, M., Taylor, R. The Geometry and Cohomology of Some Simple Shimura Varieties. A. Mathematics Studies, vol. 151, Princeton University Press, Princeton, NJ (2001). (With an appendix by Vladimir G. Berkovich)

  13. Herstein I.N. (1953) Finite multiplicative subgroups in division rings. Pacific J. Math. 3, 121–126

    MATH  MathSciNet  Google Scholar 

  14. Jordan C.J. (1878) Reine Angew. Math. 84, 89–215

    Google Scholar 

  15. Kazhdan D. (1977) Some applications of the Weil representation. J. Anal. Matt. 32, 235–248

    Article  MATH  MathSciNet  Google Scholar 

  16. Klingler B. (2003) Sur la rigidité de certains groupes fondamentaux, l’arithméticité des réseaux hyperboliques complexes, et les “faux plans projectifs”. Invent. Math. 153(1): 105–143

    Article  MATH  MathSciNet  Google Scholar 

  17. Knapp A.W. (1996) Lie Groups Beyond an Introduction. Progress in Mathematics, vol. 140, Birkhäuser Boston Inc., Boston, MA

    MATH  Google Scholar 

  18. Maclachlan C., Reid A.W. (2003) The Arithmetic of Hyperbolic 3-manifolds. Graduate Texts in Mathematics, vol. 219, Springer-Verlag, New York

    MATH  Google Scholar 

  19. Mumford D. (1979) An algebraic surface with K ample, (K 2)=9, p g = q = 0. Amer. J. Math. 101, 233–244

    Article  MATH  MathSciNet  Google Scholar 

  20. Platonov V., Rapinchuk A. (1994) Algebraic Groups and Number Theory. Pure and Applied Mathematics. Academic Press Inc., Boston, MA

    Google Scholar 

  21. Ratcliffe J.G., Tschantz S.T. (1999) On the torsion of the group O(n ,1; Z) of integral Lorentzian (n+1)×(n+1) matrices. J. Pure Appl. Algebra 136, 157–181

    Article  MATH  MathSciNet  Google Scholar 

  22. Reznikov A. (1995) Simpson’s theory and superrigidity of complex hyperbolic lattices. C. R. Acad. Sci. Paris Sér. I Math. 320(9): 1061–1064

    MATH  MathSciNet  Google Scholar 

  23. Rogawski J.D. (1990) Automorphic Representations of Unitary Groups in Three Variables. Annals of Mathematics Studies, vol. 123, Princeton University Press, Princeton, NJ

    MATH  Google Scholar 

  24. Scharlau W. (1985) Quadratic and Hermitian Forms. Grundlehren Math. Wiss., vol. 270, Springer-Verlag, Berlin

    Google Scholar 

  25. Serre, J.-P. Linear Representations of Finite Groups. Springer-Verlag, New York (1977) Translated from the second French edition by Leonard L. Scott, Graduate Texts in Mathematics, vol. 42

  26. Shephard G.C., Todd J.A. (1954) Finite unitary reflection groups. Canadian J. Math. 6, 274–304

    MATH  MathSciNet  Google Scholar 

  27. Stover, M. Property (FA) and lattices in SU(2, 1), Preprint.

  28. Vignéras M.-F. (1980) Arithmétique des algèbres de quaternions. Lecture Notes in Mathematics, vol. 800, Springer, Berlin

    MATH  Google Scholar 

  29. Weisfeiler, B. Post-classification version of Jordan’s theorem on finite linear groups. Proc. Nat. Acad. Sci. U.S.A. 81(16), (1984) Phys. Sci. 5278–5279.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. McReynolds.

Additional information

Supported by a Continuing Education fellowship

Rights and permissions

Reprints and permissions

About this article

Cite this article

McReynolds, D.B. Finite Subgroups of Arithmetic Lattices in U (2, 1). Geom Dedicata 122, 135–144 (2006). https://doi.org/10.1007/s10711-006-9062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-006-9062-3

Keywords

Mathematics Subject Classifications (2000)

Navigation