Skip to main content
Log in

Semigroup Actions on \({\mathbb{T}^n}\)

  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

Let S be a semigroup of nonsingular n × n-matrices with integer coefficients. There is a natural action of S on the n-dimensional torus \({\mathbb{T}^n}\). We give a complete characterization of S that satisfies the following property(ID): The only infinite closed S-invariant subset of \({\mathbb{T}^n}\) is \({\mathbb{T}^n}\) itself. We prove that the semigroup of affine transformations, whose linear parts satisfy property ID, also satisfies property ID. This generalizes the results of H. Furstenberg for a circle and D. Berend for commutative semigroups. In addition, we describe orbits for semigroups that are not virtually cyclic and act strongly irreducibly on \({\mathbb{T}^n}\). We also give a description of orbits under action of nonvirtually cyclic irreducible semigroups. Furthermore, we obtain a characterization of closed minimal sets of such actions and we prove that an irreducible subgroup of SL(n, ℤ) acts tautly on \({\mathbb{T}^n}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benoist, Y.: Proprits asymptotiques des groupes linaires (II), In: Analysis on Homogeneous Spaces and Representation Theory of Lie Groups, (Okayama-Kyoto (1997), Adv. Stud. Pure Math. 26, Math. Soc. Japan, Tokyo, 2000, pp. 33–48.

    Chapter  Google Scholar 

  2. Berend, D.: Multi-invariant sets on tori, Trans. Amer. Math. Soc. 280(2) (1983), 509–532.

    Article  MathSciNet  Google Scholar 

  3. Berend, D.: Multi-invariant sets on compact abelian groups, Trans. Amer. Math. Soc. 286(2) (1984), 505–535.

    Article  MathSciNet  Google Scholar 

  4. Berend, D.: Ergodic semigroups of epimorphisms, Trans. Amer. Math. Soc. 289(1) (1985), 393–407.

    Article  MathSciNet  Google Scholar 

  5. Bougerol, P.: Tightness of products of random matrices and stability of linear stochastic systems, Ann. Probab. 15(1) (1987), 40–74.

    Article  MathSciNet  Google Scholar 

  6. Conze, J.-P. and Guivarc’h, Y.: Remarques sur la distalit dans les espaces vectoriels, C.R. Acad. Sci. Paris Ser. A 278 (1974), 1083–1086.

    MathSciNet  MATH  Google Scholar 

  7. Furstenberg, H.: Disjointness in ergodic theory, minimal sets, and a problem on diophantine approximation, Math. Systems Theory 1 (1967), 1–49.

    Article  MathSciNet  Google Scholar 

  8. Furstenberg, H.: Stiffness of Group Actions, Lie Groups and Ergodic Theory (Mumbai, 1996), Tata Inst. Fund. Res. Stud. Math. 14, Tata Inst. Fund. Res., Bombay, 1998, pp. 105–117.

    MATH  Google Scholar 

  9. Guivarc’h, Y. and Starkov, A.: Orbits of linear group actions, random walks on homogeneous spaces, and toral automorphisms, Ergodic Theory Dynam. Systems 24(3) (2004), 767–802.

    Article  MathSciNet  Google Scholar 

  10. Lang, S.: Algebra, 2nd edn, Addison-Wesley, Reading, Mass., 1984.

    MATH  Google Scholar 

  11. Margulis, G.: Discrete Subgroups of Semisimple Lie Groups, Springer-Verlag, Berlin, 1991.

    Book  Google Scholar 

  12. Muchnik, R.: Orbits of Zariski dense semigroups of SL(n, ℤ), to appear in Ergodic Theory Dynam. Systems.

  13. Narkiewicz, W.: Elementary and Analytic Theory of Algebraic Numbers, 2nd edn, Springer-Verlag, Berlin, 1990.

    MATH  Google Scholar 

  14. Starkov, A.: Orbit closures of toral automorphism groups, Preprint (1999).

  15. Starkov, A.: Orbit closures of toral automorphism groups-II, Preprint (2000).

  16. Starkov, A.: Dynamical Systems on Homogeneous Spaces, Transl. Math. Monogr. 190, Amer. Math. Soc., Providence, RI.

  17. Tits, J.: Free subgroups in linear groups, J. Algebra 20 (1972), 250–270.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Muchnik.

Additional information

Mathematics Subject Classifications (2000). Primary: 37B05; secondary: 47D03, 57S05, 57S25.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muchnik, R. Semigroup Actions on \({\mathbb{T}^n}\). Geom Dedicata 110, 1–47 (2005). https://doi.org/10.1007/s10711-004-4321-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-004-4321-7

Keywords

Navigation