Skip to main content

Advertisement

Log in

A genetic algorithm for rule extraction in fuzzy adaptive learning control networks

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

This paper presents a novel approach, dubbed Falcon-GA, for rule extraction in a Fuzzy Adaptive Learning Control Network (FALCON) using a Genetic Algorithm (GA). The FALCON-GA combines multiple techniques to establish the relationships and connections among fuzzy rules, including the use of a GA for rule extraction and a Gradient-based method for fine-tuning the membership function parameters. The learning algorithm of FALCON-GA incorporates three key components: the ART (Adaptive Resonance Theory) clustering algorithm for initial membership function identification, the Genetic Algorithm for rule extraction, and the Gradient method for adjusting membership function parameters. Moreover, FALCON-GA offers flexibility by allowing the incorporation of different rule types within the FALCON architecture, making it flexible and expansible. The proposed model has been evaluated in various forecasting problems reported in the literature and compared to alternative models. Computational experiments demonstrate the effectiveness of FALCON-GA in forecasting tasks and reveal significant performance improvements compared to the original FALCON. These results indicate that Genetic Algorithms efficiently extract rules for Fuzzy Adaptive Learning Control Networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E. Cox, Adaptive fuzzy systems. IEEE Spectr. 30(2), 27–31 (1993)

    Article  Google Scholar 

  2. C. Imhof, P. Bergamin, S. McGarrity, Implementation of adaptive learning systems: current state and potential. Online teaching and learning in higher education 93–115 (2020)

  3. N. Alajlani, M. Crabb, I. Murray, A systematic review in understanding stakeholders’ role in developing adaptive learning systems. J. Comput. Educ. 1–20 (2023)

  4. S. Chopra, G. Dhiman, A. Sharma, M. Shabaz, P. Shukla, M. Arora, Taxonomy of adaptive neuro-fuzzy inference system in modern engineering sciences. Computational Intelligence and Neuroscience 1–23 (2021)

  5. D. Nauck, R. Kruse, Neuro–fuzzy systems. In: Handbook of Fuzzy Computation, pp. 319–2. CRC Press (2020)

  6. S. Song, J.H. Park, B. Zhang, X. Song, Z. Zhang, Adaptive command filtered neuro-fuzzy control design for fractional-order nonlinear systems with unknown control directions and input quantization. IEEE Trans. Syst. Man Cybern. Syst. 7238–7249 (2020)

  7. A.R. Mendoza, W. Yu, Fuzzy adaptive control law for trajectory tracking based on a fuzzy adaptive neural PID controller of a multi-rotor unmanned aerial vehicle. Int. J. Control Autom. Syst. 21(2), 658–670 (2023)

    Article  Google Scholar 

  8. S. Milan, A. Roozbahani, N. Azar, S. Javadi, Development of adaptive neuro fuzzy inference system-evolutionary algorithms hybrid models (ANFIS-EA) for prediction of optimal groundwater exploitation. J. Hydrol. 598, 1–12 (2021)

    Google Scholar 

  9. I. Ahmadianfar, S. Shirvani-Hosseini, J. He, A. Samadi-Koucheksaraee, Z.M. Yaseen, An improved adaptive neuro fuzzy inference system model using conjoined metaheuristic algorithms for electrical conductivity prediction. Sci. Rep. 12(1), 1–34 (2022)

    Article  Google Scholar 

  10. C. Iwendi, K. Mahboob, Z. Khalid, A. Javed, M. Rizwan, U. Ghosh, Classification of COVID-19 individuals using adaptive neuro-fuzzy inference system. Multimedia Syst. 1–15 (2021)

  11. G. Xue, Q. Chang, J. Wang, K. Zhang, N.R. Pal, An adaptive neuro-fuzzy system with integrated feature selection and rule extraction for high-dimensional classification problems. IEEE Trans. Fuzzy Syst. 31(7), 2167–2181 (2023)

    Article  Google Scholar 

  12. X. Gu, J. Han, Q. Shen, P.P. Angelov, Autonomous learning for fuzzy systems: a review. Artif. Intell. Rev. 56(8), 7549–7595 (2023)

    Article  Google Scholar 

  13. A.D. Garcez, S. Bader, H. Bowman, L.C. Lamb, L. Penning, B. Illuminoo, H. Poon, C.G. Zaverucha, Neural-symbolic learning and reasoning: a survey and interpretation. Neuro-Symb. Artif. Intell. State Art 342(1), 327 (2022)

    Google Scholar 

  14. P.V. Campos Souza, Fuzzy neural networks and neuro-fuzzy networks: a review the main techniques and applications used in the literature. Appl. Soft Comput. 1–26 (2020)

  15. C.-T. Lin, C.S.G. Lee, Neural-network-based fuzzy logic control and decision system. IEEE Trans. Comput. 40(12), 1320–1336 (1991)

    Article  MathSciNet  Google Scholar 

  16. E. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Mach. Stud. 7(1), 283–296 (1975)

    Article  Google Scholar 

  17. D. Nababan, J.E. Simarmata, Analysis of student satisfaction with academic services using fuzzy Mamdani method. Solid State Technol. 63(3), 5069–5075 (2020)

    Google Scholar 

  18. A. Fernandez, F. Herrera, O. Cordon, M.J. Jesus, F. Marcelloni, Evolutionary fuzzy systems for explainable artificial intelligence: why, when, what for, and where to? IEEE Comput. Intell. Mag. 14(1), 69–81 (2019)

    Article  Google Scholar 

  19. K. Quah, C. Quek, G. Leedham, Reinforcement learning combined with a fuzzy adaptive learning control network (FALCON-R) for pattern classification. Pattern Recognit. 38(4), 513–526 (2005)

    Article  Google Scholar 

  20. Y. Wong, Fuzzy Adaptive Learning Control Network with Policy and Another Adaptive Resonance Theory (FALCON-PAART) Embedded Deep Structure with Applications in Stock Market Prediction and Analysis (Nanyang Technological University, 2022)

    Google Scholar 

  21. D. Yu, B. Yang, D. Liu, H. Wang, S. Pan, A survey on neural-symbolic learning systems. Neural Netw. 166, 105–126 (2023)

    Article  Google Scholar 

  22. J. Townsend, T. Chaton, J. Monteiro, Extracting relational explanations from deep neural networks: a survey from a neural-symbolic perspective. IEEE Trans. Neural Netw. Learn. Syst. 3456–3470 (2019)

  23. X. Kang, C.S. Porter, E. Bohemia, Using the fuzzy weighted association rule mining approach to develop a customer satisfaction product form. J. Intell. Fuzzy Syst. 38(4), 4343–4357 (2020)

    Article  Google Scholar 

  24. R.A. Aliev, W. Pedrycz, B. Guirimov, O.H. Huseynov, Clustering method for production of z-number based if-then rules. Inf. Sci. 520, 155–176 (2020)

    Article  MathSciNet  Google Scholar 

  25. J. Kerr-Wilson, W. Pedrycz, Generating a hierarchical fuzzy rule-based model. Fuzzy Sets Syst. 124–139 (2020)

  26. T. Chen, C. Shang, P. Su, E. Keravnou-Papailiou, Y. Zhao, G. Antoniou, Q. Shen, A decision tree-initialised neuro-fuzzy approach for clinical decision support. Artif. Intell. Med. 111, 1–13 (2021)

    Article  Google Scholar 

  27. N.F. Idris, M.A. Ismail, Breast cancer disease classification using fuzzy-ID3 algorithm with fuzzyDBD method: automatic fuzzy database definition. PeerJ Comput. Sci. 7, 1–22 (2021)

    Article  Google Scholar 

  28. P. Ducange, F. Marcelloni, R. Pecori et al., Fuzzy hoeffding decision tree for data stream classification. Int. J. Comput. Intell. Syst. 946–964 (2021)

  29. N.R. Pal, S. Saha, Simultaneous structure identification and fuzzy rule generation for Takagi–Sugeno models. IEEE Trans. Syst. Man Cybern. B (Cybern.) 1626–1638 (2008)

  30. C. Joshi, R.K. Ranjan, V. Bharti, A fuzzy logic based feature engineering approach for botnet detection using ANN. J. King Saud Univ. Comput. Inf. Sci. 34(9), 6872–6882 (2022)

    Google Scholar 

  31. Y. Xing, H. Shu, H. Zhao, D. Li, L. Guo, Survey on botnet detection techniques: classification, methods, and evaluation. Math. Probl. Eng. 1–24 (2021)

  32. P.V. de Campos Souza, E. Lughofer, An advanced interpretable fuzzy neural network model based on uni-nullneuron constructed from n-uninorms. Fuzzy Sets Syst. 426, 1–26 (2022)

    Article  MathSciNet  Google Scholar 

  33. H. Zhu, Y. Shang, J. Du, C. Zhou, X. Liu, A fuzzy control method based on rule extraction for zinc leaching process of zinc hydrometallurgy. Min. Metall. Explor. 1–11 (2023)

  34. I. Naskar, A. Pal, N.K. Jana, Tuning of fuzzy controller by variable clustered fuzzy rules and its application to overhead crane, in 2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), pp. 119–124. IEEE (2023)

  35. N.K. Kasabov, Y. Tan, M. Doborjeh, E. Tu, J. Yang, W. Goh, J. Lee, Transfer learning of fuzzy spatio-temporal rules in a brain-inspired spiking neural network architecture: a case study on spatio-temporal brain data. IEEE Trans. Fuzzy Syst. (2023)

  36. K. Bai, W. Zhang, S. Wen, C. Zhao, W. Meng, Y. Zeng, D. Jia, A data-knowledge-driven interval type-2 fuzzy neural network with interpretability and self-adaptive structure. Inf. Sci. 660, 120133 (2024)

    Article  Google Scholar 

  37. J. Gao, F. Heng, Y. Yuan, Y. Liu, A novel machine learning method for multiaxial fatigue life prediction: improved adaptive neuro-fuzzy inference system. Int. J. Fatigue (2024)

  38. K.V. Shihabudheen, G.N. Pillai, Recent advances in neuro-fuzzy system. Syst. Knowl. Based 152(C), 136–162 (2018)

    Article  Google Scholar 

  39. A.M.B.V. Babu, Gujarathi: Evolutionary Computation: Techniques and Applications (Apple Academic Press Inc, 2017)

    Google Scholar 

  40. A. Masoumi, A. Tavakolpour-Saleh, A. Rahideh, Applying a genetic-fuzzy control scheme to an active free piston stirling engine: design and experiment. Appl. Energy 268, 1–13 (2020)

    Article  Google Scholar 

  41. Y.-C. Lin, S.-J. Lee, C.-S. Ouyang, C.-H. Wu, Air quality prediction by neuro-fuzzy modeling approach. Appl. Soft Comput. 86, 1–13 (2020)

    Article  Google Scholar 

  42. M. Kaushik, R. Sharma, S.A. Peious, M. Shahin, S.B. Yahia, D. Draheim, A systematic assessment of numerical association rule mining methods. SN Comput. Sci. 2, 1–13 (2021)

    Article  Google Scholar 

  43. E. Akgül, Y. Delice, E.K. Aydoğan, F.E. Boran, An application of fuzzy linguistic summarization and fuzzy association rule mining to Kansei engineering: a case study on cradle design. J. Amb. Intell. Hum. Comput. 2533–2563 (2022)

  44. M. Dirik, Detection of counterfeit banknotes using genetic fuzzy system. J. Fuzzy Ext. Appl. 302–312 (2022)

  45. M. Dirik, Prediction of NOx emissions from gas turbines of a combined cycle power plant using an ANFIS model optimized by GA. Fuel 321, 1–11 (2022)

    Article  Google Scholar 

  46. K. El Moutaouakil, M. Roudani, A. El Ouissari, Optimal entropy genetic fuzzy-c-means smote (OEGFCM-SMOTE). Knowl. Based Syst. 2(5), 348 (2023)

    Google Scholar 

  47. S. Tayyebi, Z. Hajjar, S. Soltanali, Fuzzy modeling system based on GA fuzzy rule extraction and hybrid of differential evolution and tabu search approaches: application in synthesis gas conversion to valuable hydrocarbons process. Fuel 335, 1–13 (2023)

    Article  Google Scholar 

  48. A.K. Behera, S. Dehuri, A. Ghosh, Surrogate-assisted multi-objective genetic fuzzy associative classification by multiple granularity measures, in 2023 International Conference for Advancement in Technology (ICONAT), pp. 1–9. IEEE (2023)

  49. I. Siddikov, O. Porubay, T. Rakhimov, Synthesis of the neuro-fuzzy regulator with genetic algorithm. Int. J. Electr. Comput. Eng. (IJECE) 14, 184–191 (2024)

    Article  Google Scholar 

  50. G. Quadrelli, R. Tanscheit, M. Vellasco, Neuro-fuzzy modelling and control of nonlinear dynamic systems. Learn. Nonlinear Models (2003)

  51. W. Tung, C. Quek, Falcon: neural fuzzy control and decision systems using FKP and PFKP clustering algorithms. IEEE Trans. Syst. Man Cybern. B (Cybernet.) 34(1), 686–695 (2004)

    Article  Google Scholar 

  52. C.-T. Lin, C.G. Lee, Neural Fuzzy Systems: A Neuro-fuzzy Synergism to Intelligent Systems (Prentice-Hall, 1996)

    Google Scholar 

  53. V. Kreinovich, C. Quintana, L. Reznik, Gaussian membership functions are most adequate in representing uncertainty in measurements, in Proceedings of NAFIPS, pp. 15–17 (1992)

  54. G. Carpenter, S. Grossberg, D. Rosen, Fuzzy art: fast stable learning and categorization of analog patterns by an adaptive resonance system. Neural Netw. 759–771 (1991)

  55. T. Brooks, D. Pope, M. Marcolini, Airfoil self-noise. UCI Machine Learning Repository (2014)

  56. J. Gerritsma, R. Onnink, A. Versluis, Yacht hydrodynamics. UCI Machine Learning Repository (2013)

  57. I.-C. Yeh, Real estate valuation. UCI Mach. Learn. Repos. (2018). https://doi.org/10.24432/C5J30W

    Article  Google Scholar 

  58. G. Bras, A. Silva, E. Wanner, Multi-gene genetic programming to building up fuzzy rule-base in neo-fuzzy-neuron networks. J. Intell. Fuzzy Syst. 499–516 (2021)

  59. C. Pramod, G. Pillai, K-means clustering based extreme learning ANFIS with improved interpretability for regression problems. Knowl. Based Syst. 215, 1–13 (2021)

    Article  Google Scholar 

  60. S. Ruberto, V. Terragni, J. Moore, A semantic genetic programming framework based on dynamic targets. Genet. Program Evolvable Mach. 4, 463–493 (2021)

    Article  Google Scholar 

  61. B. Ouyang, Y. Song, Y. Li, G. Sant, M. Bauchy, EBOD: an ensemble-based outlier detection algorithm for noisy datasets. Knowl. Based Syst. 231, 1–16 (2021)

    Article  Google Scholar 

  62. I.-F. Chung, C.-J. Lin, C.-T. Lin, A GA-based fuzzy adaptive learning control network. Fuzzy Sets Syst. 112(1), 65–84 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge CAPES, Brazilian Ministry of Education, code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glender Brás.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brás, G., Silva, A.M. & Wanner, E.F. A genetic algorithm for rule extraction in fuzzy adaptive learning control networks. Genet Program Evolvable Mach 25, 11 (2024). https://doi.org/10.1007/s10710-024-09486-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10710-024-09486-2

Keywords

Navigation