Evolving dispatching rules for optimising many-objective criteria in the unrelated machines environment

Article
  • 135 Downloads
Part of the following topical collections:
  1. Special Issue on Automated Design and Adaptation of Heuristics for Scheduling and Combinatorial Optimisation

Abstract

Dispatching rules are often a method of choice for solving various scheduling problems. Most often, they are designed by human experts in order to optimise a certain criterion. However, it is seldom the case that a schedule should optimise a single criterion all alone. More common is the case where several criteria need to be optimised at the same time. This paper deals with the problem of automatic design of dispatching rules (DRs) by the use of genetic programming, for many-objective scheduling problems. Four multi-objective and many-objective algorithms, including nondominated sorting genetic algorithm II, nondominated sorting genetic algorithm III, harmonic distance based multi-objective evolutionary algorithm and multi-objective evolutionary algorithm based on decomposition, have been used in order to obtain sets of Pareto optimal solutions for various many-objective scheduling problems. Through experiments it was shown that automatically generated multi-objective DRs not only achieve good performance when compared to standard DRs, but can also outperform automatically generated single objective DRs for most criteria combinations.

Keywords

Dispatching rules Genetic programming Many-objective optimisation Scheduling Unrelated machines environment 

References

  1. 1.
    A. Allahverdi, J.N.D. Gupta, T. Aldowaisan, A review of scheduling research involving setup considerations. Omega 27(2), 219–239 (1999). doi: 10.1016/S0305-0483(98)00042-5 CrossRefGoogle Scholar
  2. 2.
    A. Allahverdi, C.T. Ng, T.C.E. Cheng, M.Y. Kovalyov, A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008). doi: 10.1016/j.ejor.2006.06.060 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    S.F. Attar, M. Mohammadi, R. Tavakkoli-Moghaddam, Hybrid flexible flowshop scheduling problem with unrelated parallel machines and limited waiting times. Int. J. Adv. Manuf. Technol. 68(5–8), 1583–1599 (2013). doi: 10.1007/s00170-013-4956-3 CrossRefGoogle Scholar
  4. 4.
    A. Baykasoğlu, L. Özbakır, Discovering task assignment rules for assembly line balancing via genetic programming. Int. J. Adv. Manuf. Technol. 76(1), 417–434 (2015)CrossRefGoogle Scholar
  5. 5.
    J. Branke, C.W. Pickardt, Evolutionary search for difficult problem instances to support the design of job shop dispatching rules. Eur. J. Oper. Res. 212(1), 22–32 (2011). doi: 10.1016/j.ejor.2011.01.044 MathSciNetCrossRefGoogle Scholar
  6. 6.
    J. Branke, S. Nguyen, C.W. Pickardt, M. Zhang, Automated design of production scheduling heuristics: a review. IEEE Trans. Evol. Comput. 20(1), 110–124 (2016). doi: 10.1109/TEVC.2015.2429314 CrossRefGoogle Scholar
  7. 7.
    T.D. Braun, H.J. Siegel, N. Beck, L.L. Bölöni, M. Maheswaran, A.I. Reuther, J.P. Robertson, M.D. Theys, B. Yao, D. Hensgen, R.F. Freund, L.L. Boloni, A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. J. Parallel Distrib. Comput. 61(6), 810–837 (2001). doi: 10.1006/jpdc.2000.1714 CrossRefMATHGoogle Scholar
  8. 8.
    T.D. Braun, H.J. Siegel, N. Beck, L.L. Bölöni, M. Maheswaran, A.I. Reuther, J.P. Robertson, M.D. Theys, B. Yao, D. Hensgen et al., A comparison of eleven static heuristics for mapping a class of independent tasks onto heterogeneous distributed computing systems. J. Parallel Distrib. Comput. 61(6), 810–837 (2001)CrossRefMATHGoogle Scholar
  9. 9.
    E.K. Burke, M.R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, J.R. Woodward, Exploring hyper-heuristic methodologies with genetic programming. Comput. Intell. 1, 177–201 (2009). doi: 10.1007/978-3-642-01799-5_6 CrossRefMATHGoogle Scholar
  10. 10.
    E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, J.R. Woodward, A classification of hyper-heuristics approaches. Handb. Metaheuristics 57, 449–468 (2010). doi: 10.1007/978-1-4419-1665-5_15 CrossRefGoogle Scholar
  11. 11.
    B. Cardoen, E. Demeulemeester, J. Beliën, Optimizing a multiple objective surgical case sequencing problem. Int. J. Prod. Econ. 119(2), 354–366 (2009)CrossRefMATHGoogle Scholar
  12. 12.
    V.H.L. Cheng, L.S. Crawford, P.K. Menon, Air traffic control using genetic search techniques, in Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No. 99CH36328), vol 1. (1999), pp. 249–254. doi: 10.1109/CCA.1999.806209
  13. 13.
    A. Costa, F. Cappadonna, S. Fichera, A hybrid genetic algorithm for job sequencing and worker allocation in parallel unrelated machines with sequence-dependent setup times. Int. J. Adv. Manuf. Technol. 69(9–12), 2799–2817 (2013). doi: 10.1007/s00170-013-5221-5 CrossRefGoogle Scholar
  14. 14.
    E. Davis, J.M. Jaffe, Algorithms for scheduling tasks on unrelated processors. J. ACM (JACM) 28(4), 721–736 (1981)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    K. Deb, H. Jain, An Evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evolut. Comput. 18(4), 577–601 (2014). doi: 10.1109/TEVC.2013.2281535 CrossRefGoogle Scholar
  16. 16.
    K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002). doi: 10.1109/4235.996017 CrossRefGoogle Scholar
  17. 17.
    C. Dimopoulos, A.M.S. Zalzala, A genetic programming heuristic for the one-machine total tardiness problem, in Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol 3, no 1 (1999), pp. 2207–2214. doi: 10.1109/CEC.1999.785549
  18. 18.
    C. Dimopoulos, A. Zalzala, Investigating the use of genetic programming for a classic one-machine scheduling problem. Adv. Eng. Softw. 32(6), 489–498 (2001)CrossRefMATHGoogle Scholar
  19. 19.
    M. Đurasević, D. Jakobović, Comparison of solution representations for scheduling in the unrelated machines environmentGoogle Scholar
  20. 20.
    M. Đurasević, D. Jakobović, K. Knežević, Adaptive scheduling on unrelated machines with genetic programming. Appl. Soft Comput. 48, 419–430 (2016). doi: 10.1016/j.asoc.2016.07.025 CrossRefGoogle Scholar
  21. 21.
    C. Ferreira, Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst. 13(2), 87–129 (2001)MathSciNetMATHGoogle Scholar
  22. 22.
    L. Fowler, M. Pfund, L. Yu, J.W. Fowler, W.M. Carlyle, Development of a robust scheduling rule for a printed wiring board drilling operation with multiple scheduling objectives and fixed order release/pickup timesGoogle Scholar
  23. 23.
    R.H. Gomez, C.A.C. Coello, MOMBI: A new metaheuristic for many-objective optimization based on the R2 indicator, in 2013 IEEE Congress on Evolutionary Computation, CEC 2013, vol 1 (2013), pp. 2488–2495. doi: 10.1109/CEC.2013.6557868
  24. 24.
    J.V. Hansen, Genetic search methods in air traffic control. Comput. Oper. Res. 31(3), 445–459 (2004). doi: 10.1016/S0305-0548(02)00228-9 MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    E. Hart, P. Ross, D. Corne, Evolutionary scheduling: a review. Genet. Program. Evolvable Mach. 6(2), 191–220 (2005). doi: 10.1007/s10710-005-7580-7 CrossRefGoogle Scholar
  26. 26.
    D. Hensgen, R.F. Freund, Dynamic mapping of a class of independent tasks onto heterogeneous computing systems. J. Distrib. Comput. 59(2), 107–131 (1999)CrossRefGoogle Scholar
  27. 27.
    R. Hern, C.C. Coello, MOMBI : a new metaheuristic for many-objective optimization based on the R2 indicator. Science 1, 2488–2495 (2013). doi: 10.1109/CEC.2013.6557868 Google Scholar
  28. 28.
    T. Hildebrandt, J. Heger, B. Scholz-Reiter, Towards improved dispatching rules for complex shop floor scenarios: a genetic programming approach, in GECCO ’10: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (2010), pp. 257–264. doi: 10.1145/1830483.1830530
  29. 29.
    R. Hunt, M. Johnston, R. Hunt, M. Johnston, Evolving “Less-myopic” scheduling rules for dynamic job shop scheduling with genetic programming, in GECCO ’14: Proceedings of the 2014 Conference on Genetic and Evolutionary Computation (2014), pp. 927–934. doi: 10.1145/2576768.2598224
  30. 30.
    R. Hunt, M. Johnston, M. Zhang, Evolving machine-specific dispatching rules for a two-machine job shop using genetic programming, in 2014 IEEE Congress on Evolutionary Computation (CEC) (2014), pp. 618–625. doi: 10.1109/CEC.2014.6900655
  31. 31.
    H. Ishibuchi, R. Imada, Y. Setoguchi, Y. Nojima, Performance comparison of NSGA-II and NSGA-III on various many-objective test problems, in 2016 IEEE Congress on Evolutionary Computation (CEC), (2016), pp. 3045–3052. doi: 10.1109/CEC.2016.7744174
  32. 32.
    H. Ishibuchi, Y. Setoguchi, H. Masuda, Y. Nojima, Performance of decomposition-based many-objective algorithms strongly depends on pareto front shapes. IEEE Trans. Evol. Comput. PP(99), 1–1 (2016). doi: 10.1109/TEVC.2016.2587749 Google Scholar
  33. 33.
    H. Izakian, A. Abraham, V. Snasel, Comparison of heuristics for scheduling independent tasks on heterogeneous distributed environments, in International Joint Conference on Computational Sciences and Optimization. CSO 2009., vol 1 (IEEE, 2009), pp. 8–12Google Scholar
  34. 34.
    D. Jakobović, Evolutionary computation framework. http://gp.zemris.fer.hr/ecf
  35. 35.
    D. Jakobović, Project site. http://gp.zemris.fer.hr/scheduling/
  36. 36.
    D. Jakobović, L. Budin, Dynamic scheduling with genetic programming, in Proceedings of the 10th European Conference on Genetic Programming, vol. 3905 (2006), pp. 73–86. doi: 10.1007/11729976_7
  37. 37.
    D. Jakobović, L. Jelenković, L. Budin, Genetic programming heuristics for multiple machine scheduling, in Proceedings of the 10th European Conference on Genetic Programming, vol 4445 (2007), pp. 321–330. doi: 10.1007/978-3-540-71605-1_30
  38. 38.
    D. Jakobović, K. Marasović, Evolving priority scheduling heuristics with genetic programming. Appl. Soft Comput. J. 12(9), 2781–2789 (2012). doi: 10.1016/j.asoc.2012.03.065 CrossRefGoogle Scholar
  39. 39.
    S. Jiang, Y.S. Ong, J. Zhang, L. Feng, Consistencies and contradictions of performance metrics in multiobjective optimization. IEEE Trans. Cybern. 44(12), 2391–2404 (2014). doi: 10.1109/TCYB.2014.2307319 CrossRefGoogle Scholar
  40. 40.
    M. Johnston, T. Liddle, M. Zhang, A Relaxed Approach to Simplification in Genetic Programming (Springer, Berlin, 2010), pp. 110–121Google Scholar
  41. 41.
    K. Kaban, Z. Othman, D.S. Rohmah, Comparison of dispatching rules in job-shop scheduling problem using simulation: a case study. Int. J. Simul. Model. 11(3), 129–140 (2012). doi: 10.2507/IJSIMM11(3)2.201 CrossRefGoogle Scholar
  42. 42.
    M. Keijzer, V. Babovic, Dimensionally aware genetic programming. Proc. Genet. Evol. Comput. Conf. 2, 1069–1076 (1999)Google Scholar
  43. 43.
    D. Kinzett, M. Johnston, M. Zhang, Numerical simplification for bloat control and analysis of building blocks in genetic programming. Evol. Intel. 2(4), 151 (2009). doi: 10.1007/s12065-009-0029-9 CrossRefGoogle Scholar
  44. 44.
    F. Kolahan, V. Kayvanfar, A heuristic algorithm approach for scheduling of multi-criteria unrelated parallel machines. Inter. J. Mech. Aero. Indus. Mechatronic Manuf. Eng. 3(11), 1406–1409 (2009)Google Scholar
  45. 45.
    J.R. Koza, Human-competitive results produced by genetic programming. Genet. Program Evolvable Mach. 11(3–4), 251–284 (2010). doi: 10.1007/s10710-010-9112-3 CrossRefGoogle Scholar
  46. 46.
    Y.H. Lee, K. Bhaskaran, M. Pinedo, A heuristic to minimize the total weighted tardiness with sequence-dependent setups. IIE Trans. 29(1), 45–52 (1997). doi: 10.1080/07408179708966311 CrossRefGoogle Scholar
  47. 47.
    Y.K. Lin, J.W. Fowler, M.E. Pfund, Multiple-objective heuristics for scheduling unrelated parallel machines. Eur. J. Oper. Res. 227(2), 239–253 (2013)MathSciNetCrossRefGoogle Scholar
  48. 48.
    M. Maheswaran, S. Ali, H. Siegal, D. Hensgen, R. Freund, Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems, in Proceedings of Eighth Heterogeneous Computing Workshop (HCW’99), (June 1999). doi: 10.1109/HCW.1999.765094
  49. 49.
    A. Masood, Y. Mei, G. Chen, M. Zhang, Many-objective genetic programming for job-shop scheduling, in 2016 IEEE Congress on Evolutionary Computation (CEC), (2016), pp. 209–216Google Scholar
  50. 50.
    K. Miyashita, Job-shop scheduling with genetic programming, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000), (2000), pp. 505–512Google Scholar
  51. 51.
    S. Nguyen, M. Zhang, M. Johnston, A sequential genetic programming method to learn forward construction heuristics for order acceptance and scheduling, in 2014 IEEE Congress on Evolutionary Computation (CEC), (2014), pp. 1824–1831. doi: 10.1109/CEC.2014.6900347
  52. 52.
    S. Nguyen, M. Zhang, M. Johnston, K.C Tan, A coevolution genetic programming method to evolve scheduling policies for dynamic multi-objective job shop scheduling problems, in 2012 IEEE Congress on Evolutionary Computation, CEC 2012, vol i (2012), pp. 10–15. doi: 10.1109/CEC.2012.6252968
  53. 53.
    S. Nguyen, M. Zhang, K.C. Tan, A dispatching rule based genetic algorithm for order acceptance and scheduling, in Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO ’15, ACM, New York, NY, USA (2015), pp. 433–440. doi: 10.1145/2739480.2754821
  54. 54.
    S. Nguyen, M. Zhang, K.C. Tan, Enhancing genetic programming based hyper-heuristics for dynamic multi-objective job shop scheduling problems, in 2015 IEEE Congress on Evolutionary Computation (CEC), (2015), pp. 2781–2788. doi: 10.1109/CEC.2015.7257234
  55. 55.
    S. Nguyen, M. Zhang, M. Johnston, K.C. Tan, A computational study of representations in genetic programming to evolve dispatching rules for the job shop scheduling problem. IEEE Trans. Evol. Comput. 17(5), 621–639 (2013). doi: 10.1109/TEVC.2012.2227326 CrossRefGoogle Scholar
  56. 56.
    S. Nguyen, M. Zhang, M. Johnston, K.C. Tan, Dynamic multi-objective job shop scheduling: a genetic programming approach, in Automated Scheduling and Planning, Studies in Computational Intelligence, vol. 505, ed. by A.S. Uyar, E. Ozcan, N. Urquhart (Springer, Berlin, 2013), pp. 251–282CrossRefGoogle Scholar
  57. 57.
    S. Nguyen, M. Zhang, M. Johnston, K.C. Tan, Learning iterative dispatching rules for job shop scheduling with genetic programming. Int. J. Adv. Manuf. Technol. 67(1–4), 85–100 (2013). doi: 10.1007/s00170-013-4756-9 CrossRefGoogle Scholar
  58. 58.
    S. Nguyen, M. Zhang, M. Johnston, K.C. Tan, Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming. IEEE Trans. Evol. Comput. 18(2), 193–208 (2014). doi: 10.1109/TEVC.2013.2248159 CrossRefGoogle Scholar
  59. 59.
    L. Nie, L. Gao, P. Li, L. Zhang, Application of gene expression programming on dynamic job shop scheduling problem, in Proceedings of the 2011 15th International Conference on Computer Supported Cooperative Work in Design (CSCWD), (2011), pp. 291–295. doi: 10.1109/CSCWD.2011.5960088
  60. 60.
    L. Nie, X. Shao, L. Gao, W. Li, Evolving scheduling rules with gene expression programming for dynamic single-machine scheduling problems. Int. J. Adv. Manuf. Technol. 50(5–8), 729–747 (2010). doi: 10.1007/s00170-010-2518-5 CrossRefGoogle Scholar
  61. 61.
    J. Park, S. Nguyen, M. Zhang, M. Johnston, Genetic programming for order acceptance and scheduling, in 2013 IEEE Congress on Evolutionary Computation, CEC 2013, vol 3 (2013), pp. 1005–1012. doi: 10.1109/CEC.2013.6557677
  62. 62.
    S. Petrovic, E. Castro, A genetic algorithm for radiotherapy pre-treatment scheduling. Appl. Evol. Comput. 6025(August 2015), 462–471 (2010). doi: 10.1007/978-3-642-12242-2 Google Scholar
  63. 63.
    M. Pfund, J.W. Fowler, J.N.D. Gupta, A survey of algorithms for single and multi-objective unrelated parallel-machine deterministic scheduling problems. J. Chin. Inst. Ind. Eng. 21(3), 230–241 (2004). doi: 10.1080/10170660409509404 Google Scholar
  64. 64.
    C.W. Pickardt, T. Hildebrandt, J. Branke, J. Heger, B. Scholz-Reiter, Evolutionary generation of dispatching rule sets for complex dynamic scheduling problems. Int. J. Prod. Econ. 145(1), 67–77 (2013). doi: 10.1016/j.ijpe.2012.10.016 CrossRefGoogle Scholar
  65. 65.
    M. Pinedo, Scheduling Therory, Algorithms and Systems (Springer US, Boston, MA, 2012)Google Scholar
  66. 66.
    R. Poli, W.B. Langdon, N.F. McPhee, A field guide to genetic programming. Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk (2008). (With contributions by J. R. Koza)
  67. 67.
    H. Seada, K. Deb, U-NSGA-III: a unified evolutionary algorithm for single, multiple, and many-objective optimization, in International Conference on Evolutionary Multi-Criterion Optimization (2014), pp. 1–30. doi: 10.1007/978-3-319-15892-1_3
  68. 68.
    J.C. Tay, N.B. Ho, Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems. Comput. Ind. Eng. 54(3), 453–473 (2008). doi: 10.1016/j.cie.2007.08.008 CrossRefGoogle Scholar
  69. 69.
    Z. Wang, K. Tang, X. Yao, Multi-objective approaches to optimal testing resource allocation in modular software systems. IEEE Trans. Reliab. 59(3), 563–575 (2010). doi: 10.1109/TR.2010.2057310 CrossRefGoogle Scholar
  70. 70.
    L. Yu, H.M. Shih, M. Pfund, W.M. Carlyle, J.W. Fowler, Scheduling of unrelated parallel machines: an application to pwb manufacturing. IIE Trans. 34(11), 921–931 (2002). doi: 10.1023/A:1016185412209 Google Scholar
  71. 71.
    M. Zhang, W. Smart, Learning weights in genetic programs using gradient descent for object recognition, in Proceedings of the 3rd European Conference on Applications of Evolutionary Computing, EC’05, (Springer, Berlin, 2005), pp. 417–427Google Scholar
  72. 72.
    Q. Zhang, H. Li, MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evolut. Comput. 11(6), 712–731 (2007). doi: 10.1109/TEVC.2007.892759 CrossRefGoogle Scholar
  73. 73.
    M. Zhang, P. Wong, Genetic programming for medical classification: a program simplification approach. Genet. Program Evolvable Mach. 9(3), 229–255 (2008). doi: 10.1007/s10710-008-9059-9 CrossRefGoogle Scholar
  74. 74.
    A. Zhou, B.Y. Qu, H. Li, S.Z. Zhao, P.N. Suganthan, Q. Zhang, Multiobjective evolutionary algorithms: a survey of the state of the art. Swarm Evolut. Comput. 1(1), 32–49 (2011)CrossRefGoogle Scholar
  75. 75.
    E. Zitzler, M. Laumanns, L. Thiele, SPEA2: improving the strength pareto evolutionary algorithm (2005), pp. 95–100. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.112.5073
  76. 76.
    E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evolut. Comput. 3(4), 257–271 (1999). doi: 10.1109/4235.797969 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia

Personalised recommendations