Cooperative evolutionary heterogeneous simulated annealing algorithm for google machine reassignment problem

Article
Part of the following topical collections:
  1. Special Issue on Automated Design and Adaptation of Heuristics for Scheduling and Combinatorial Optimisation

Abstract

This paper investigates the Google machine reassignment problem (GMRP). GMRP is a real world optimisation problem which is to maximise the usage of cloud machines. Since GMRP is computationally challenging problem and exact methods are only advisable for small instances, meta-heuristic algorithms have been used to address medium and large instances. This paper proposes a cooperative evolutionary heterogeneous simulated annealing (CHSA) algorithm for GMRP. The proposed algorithm consists of several components devised to generate high quality solutions. Firstly, a population of solutions is used to effectively explore the solution space. Secondly, CHSA uses a pool of heterogeneous simulated annealing algorithms in which each one starts from a different initial solution and has its own configuration. Thirdly, a cooperative mechanism is designed to allow parallel searches to share their best solutions. Finally, a restart strategy based on mutation operators is proposed to improve the search performance and diversification. The evaluation on 30 diverse real-world instances shows that the proposed CHSA performs better compared to cooperative homogeneous SA and heterogeneous SA with no cooperation. In addition, CHSA outperformed the current state-of-the-art algorithms, providing new best solutions for eleven instances. The analysis on algorithm behaviour clearly shows the benefits of the cooperative heterogeneous approach on search performance.

Keywords

Machine reassignment problem Simulated annealing Cloud computing Cooperative search 

References

  1. 1.
    Roadef/euro Challenge 2012: Machine Reassignment. http://challenge.roadef.org/2012/en/
  2. 2.
    H.M. Afsar, C. Artigues, E. Bourreau, S. Kedad-Sidhoum, Machine reassignment problem: the ROADEF/EURO challenge 2012. Ann. Oper. Res. 242, 1–17 (2016)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    E. Alba, Parallel Metaheuristics: A New Class of Algorithms, vol. 47 (Wiley, New York, 2005)CrossRefMATHGoogle Scholar
  4. 4.
    E. Alba, G. Luque, S. Nesmachnow, Parallel metaheuristics: recent advances and new trends. Int. Trans. Oper. Res. 20(1), 1–48 (2013)CrossRefMATHGoogle Scholar
  5. 5.
    M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica et al., A view of cloud computing. Commun. ACM 53(4), 50–58 (2010)CrossRefGoogle Scholar
  6. 6.
    P. Badeau, F. Guertin, M. Gendreau, J.-Y. Potvin, E. Taillard, A parallel tabu search heuristic for the vehicle routing problem with time windows. Transp. Res. Part C Emerg. Technol. 5(2), 109–122 (1997)CrossRefMATHGoogle Scholar
  7. 7.
    R. Bellio, S. Ceschia, L. Di Gaspero, A. Schaerf, T. Urli, Feature-based tuning of simulated annealing applied to the curriculum-based course timetabling problem. Comput. Oper. Res. 65, 83–92 (2016)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    F. Brandt, J. Speck, M. Völker, Constraint-based large neighborhood search for machine reassignment. Ann. Oper. Res. 242(1), 63–91 (2012)CrossRefMATHGoogle Scholar
  9. 9.
    R.N. Calheiros, R. Ranjan, A. Beloglazov, C.A. De Rose, R. Buyya, Cloudsim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41(1), 23–50 (2011)CrossRefGoogle Scholar
  10. 10.
    T.G. Crainic, M. Toulouse, Parallel meta-heuristics. in Handbook of Metaheuristics, 2nd edn, ed. by M. Gendreau, J.Y. Potvin (Springer, 2010), pp. 497–541Google Scholar
  11. 11.
    M. El-Abd, M. Kamel, A taxonomy of cooperative search algorithms. in International Workshop on Hybrid Metaheuristics (Springer, 2005), pp. 32–41Google Scholar
  12. 12.
    S. García, A. Fernández, J. Luengo, F. Herrera, Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 180(10), 2044–2064 (2010)CrossRefGoogle Scholar
  13. 13.
    H. Gavranović, M. Buljubašić, E. Demirović, Variable neighborhood search for google machine reassignment problem. Electron. Notes Discret. Math. 39, 209–216 (2012)CrossRefMATHGoogle Scholar
  14. 14.
    S. Huda, J. Yearwood, R. Togneri, Hybrid metaheuristic approaches to the expectation maximization for estimation of the hidden markov model for signal modeling. Cybern. IEEE Trans. 44(10), 1962–1977 (2014)CrossRefGoogle Scholar
  15. 15.
    G. Kendall, R. Bai, J. Błazewicz, P. De Causmaecker, M. Gendreau, R. John, J. Li, B. McCollum, E. Pesch, R. Qu et al., Good laboratory practice for optimization research. J. Oper. Res. Soc. 67(4), 676–689 (2016)CrossRefGoogle Scholar
  16. 16.
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi et al., Optimization by simulated annealing. Science 220(4598), 671–680 (1983)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    D. Landa-Silva, E.K. Burke, Asynchronous cooperative local search for the office-space-allocation problem. INFORMS J. Comput. 19(4), 575–587 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    S.-W. Lin, F.Y. Vincent, A simulated annealing heuristic for the multiconstraint team orienteering problem with multiple time windows. Appl. Soft Comput. 37, 632–642 (2015)CrossRefGoogle Scholar
  19. 19.
    R. Lopes, V.W. Morais, T.F. Noronha, V.A. Souza, Heuristics and matheuristics for a real-life machine reassignment problem. Int. Trans. Oper. Res. 22(1), 77–95 (2015)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Z. Lou, J. Reinitz, Parallel simulated annealing using an adaptive resampling interval. Parallel Comput. 53, 23–31 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Y. Malitsky, D. Mehta, B. O’Sullivan, H. Simonis, Tuning parameters of large neighborhood search for the machine reassignment problem. in Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (Springer, 2013), pp. 176–192Google Scholar
  22. 22.
    R. Martí, M.G. Resende, C.C. Ribeiro, Multi-start methods for combinatorial optimization. Eur. J. Oper. Res. 226(1), 1–8 (2013)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    R. Masson, T. Vidal, J. Michallet, P.H.V. Penna, V. Petrucci, A. Subramanian, H. Dubedout, An iterated local search heuristic for multi-capacity bin packing and machine reassignment problems. Expert Syst. Appl. 40(13), 5266–5275 (2013)CrossRefGoogle Scholar
  24. 24.
    D. Mehta, B. O’Sullivan, H. Simonis, Comparing solution methods for the machine reassignment problem. in Principles and Practice of Constraint Programming. Lecture Notes in Computer Science, ed. by M. Milano (Springer, Berlin, Heidelberg, 2012), pp. 782–797Google Scholar
  25. 25.
    Y. Mei, K. Tang, X. Yao, Decomposition-based memetic algorithm for multiobjective capacitated arc routing problem. IEEE Trans. Evol. Comput. 15(2), 151–165 (2011)CrossRefGoogle Scholar
  26. 26.
    Y. Mei, K. Tang, X. Yao, A memetic algorithm for periodic capacitated arc routing problem. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 41(6), 1654–1667 (2011)CrossRefGoogle Scholar
  27. 27.
    M. Mrad, A. Gharbi, M. Haouari, M. Kharbeche, An optimization-based heuristic for the machine reassignment problem. Ann. Oper. Res. 242(1), 115–132 (2015)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    D. Mu, C. Wang, F. Zhao, J.W. Sutherland, Solving vehicle routing problem with simultaneous pickup and delivery using parallel simulated annealing algorithm. Int. J. Ship. Transp. Logist. 8(1), 81–106 (2016)CrossRefGoogle Scholar
  29. 29.
    F. Neri, C. Cotta, Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol. Comput. 2, 1–14 (2012)CrossRefGoogle Scholar
  30. 30.
    S. Pace, A. Turky, I. Moser, A. Aleti, Distributing fibre boards: a practical application of the heterogeneous fleet vehicle routing problem with time windows and three-dimensional loading constraints. Proced. Comput. Sci. 51, 2257–2266 (2015)CrossRefGoogle Scholar
  31. 31.
    K. Peng, Y. Shen, J. Li, A multi-objective simulated annealing for bus driver rostering. in Bio-Inspired Computing—Theories and Applications. Communications in Computer and Information Science, vol. 562, ed. by M. Gong, L. Pan, T. Song, K. Tang, X. Zhang (Springer, Berlin, Heidelberg, 2015), pp. 315–330Google Scholar
  32. 32.
    G.M. Portal, M. Ritt, L. Borba, L.S. Buriol, Simulated annealing for the machine reassignment problem. Ann. Oper. Res. 242(1), 93–114 (2016)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    M.R.P. Ritt, An Algorithmic Study of the Machine Reassignment Problem. PhD Thesis, Universidade Federal do Rio Grande do Sul (2012)Google Scholar
  34. 34.
    N. Sabar, J. Abawajy, J. Yearwood, Heterogeneous cooperative co-evolution memetic differential evolution algorithms for big data optimisation problems. IEEE Trans. Evol. Comput. 21(2), 315–327 (2017)CrossRefGoogle Scholar
  35. 35.
    N.R. Sabar, A. Aleti, An adaptive memetic algorithm for the architecture optimisation problem. in Australasian Conference on Artificial Life and Computational Intelligence (Springer, 2017), pp. 254–265Google Scholar
  36. 36.
    N.R. Sabar, M. Ayob, G. Kendall, R. Qu, Grammatical evolution hyper-heuristic for combinatorial optimization problems. IEEE Trans. Evol. Comput. 17(6), 840–861 (2013)CrossRefGoogle Scholar
  37. 37.
    N.R. Sabar, M. Ayob, G. Kendall, R. Qu, Automatic design of a hyper-heuristic framework with gene expression programming for combinatorial optimization problems. IEEE Trans. Evol. Comput. 19(3), 309–325 (2015)CrossRefGoogle Scholar
  38. 38.
    N.R. Sabar, M. Ayob, G. Kendall, R. Qu, A dynamic multiarmed bandit-gene expression programming hyper-heuristic for combinatorial optimization problems. IEEE Trans. Cybern. 45(2), 217–228 (2015)CrossRefGoogle Scholar
  39. 39.
    N.R. Sabar, G. Kendall, An iterated local search with multiple perturbation operators and time varying perturbation strength for the aircraft landing problem. Omega 56, 88–98 (2015)CrossRefGoogle Scholar
  40. 40.
    N.R. Sabar, A. Song, Grammatical evolution enhancing simulated annealing for the load balancing problem in cloud computing. in Proceedings of the 2016 on Genetic and Evolutionary Computation Conference ACM (2016), pp. 997–1003Google Scholar
  41. 41.
    N.R. Sabar, A. Song, Z. Tari, X. Yi, A. Zomaya, A memetic algorithm for dynamic shortest path routing on mobile ad-hoc networks. in Parallel and Distributed Systems (ICPADS), 2015 IEEE 21st International Conference on IEEE (2015), pp. 60–67Google Scholar
  42. 42.
    N.R. Sabar, A. Song, M. Zhang, A variable local search based memetic algorithm for the load balancing problem in cloud computing. in European Conference on the Applications of Evolutionary Computation (Springer, 2016), pp. 267–282Google Scholar
  43. 43.
    N.R Sabar, A. Turky, A. Song, A multi-memory multi-population memetic algorithm for dynamic shortest path routing in mobile ad-hoc networks. in Pacific Rim International Conference on Artificial Intelligence (Springer, 2016), pp. 406–418Google Scholar
  44. 44.
    J. Sun, Q. Zhang, X. Yao, Meta-heuristic combining prior online and offline information for the quadratic assignment problem. Cybern. IEEE Trans. 44(3), 429–444 (2014)CrossRefGoogle Scholar
  45. 45.
    A. Turky, N.R. Sabar, A. Sattar, A. Song, Parallel late acceptance hill-climbing algorithm for the google machine reassignment problem. in Australasian Joint Conference on Artificial Intelligence (Springer, 2016), pp. 163–174Google Scholar
  46. 46.
    A. Turky, N.R. Sabar, A. Song, A multi-population memetic algorithm for dynamic shortest path routing in mobile ad-hoc networks. in Evolutionary Computation (CEC), 2016 IEEE Congress on IEEE (2016), pp. 4119–4126Google Scholar
  47. 47.
    A. Turky, N.R. Sabar, A. Song, An evolutionary simulated annealing algorithm for google machine reassignment problem. in Intelligent and Evolutionary Systems: The 20th Asia Pacific Symposium, IES 2016, Canberra, Australia, November 2016, Proceedings (Springer, 2017), pp. 431–442Google Scholar
  48. 48.
    A. Turky, N.R. Sabar, A. Song, Neighbourhood analysis: a case study on google machine reassignment problem. in Australasian Conference on Artificial Life and Computational Intelligence (Springer, 2017), pp. 228–237Google Scholar
  49. 49.
    F.Y. Vincent, S.-Y. Lin, A simulated annealing heuristic for the open location-routing problem. Comput. Oper. Res. 62, 184–196 (2015)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    J. Wang, W. Zhang, J. Zhang, Cooperative differential evolution with multiple populations for multiobjective optimization. IEEE Trans. Cybern. 46(12), 2848–2861 (2016)CrossRefGoogle Scholar
  51. 51.
    Z. Wang, Z. Lü, T. Ye, Multi-neighborhood local search optimization for machine reassignment problem. Comput. Oper. Res. 68, 16–29 (2016)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    S. Xavier-de Souza, J.A. Suykens, J. Vandewalle, D. Bollé, D. Bollé, Coupled simulated annealing. Syst. Man Cybern. Part B Cybern. IEEE Trans. 40(2), 320–335 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Computer Science and Information TechnologyRMIT UniversityMelbourneAustralia
  2. 2.Queensland University of TechnologyBrisbane CityAustralia

Personalised recommendations