Comparison of ensemble learning methods for creating ensembles of dispatching rules for the unrelated machines environment

Article
  • 88 Downloads
Part of the following topical collections:
  1. Special Issue on Automated Design and Adaptation of Heuristics for Scheduling and Combinatorial Optimisation

Abstract

Dispatching rules are often the method of choice for solving various scheduling problems, especially since they are applicable in dynamic scheduling environments. Unfortunately, dispatching rules are hard to design and are also unable to deliver results which are of equal quality as results achieved by different metaheuristic methods. As a consequence, genetic programming is commonly used in order to automatically design dispatching rules. Furthermore, a great amount of research with different genetic programming methods is done to increase the performance of the generated dispatching rules. In order to additionally improve the effectiveness of the evolved dispatching rules, in this paper the use of several different ensemble learning algorithms is proposed to create ensembles of dispatching rules for the dynamic scheduling problem in the unrelated machines environment. Four different ensemble learning approaches will be considered, which will be used in order to create ensembles of dispatching rules: simple ensemble combination (proposed in this paper), BagGP, BoostGP and cooperative coevolution. Additionally, the effectiveness of these algorithms is analysed based on some ensemble learning parameters. Finally, an additional search method, which finds the optimal combinations of dispatching rules to form the ensembles, is proposed and applied. The obtained results show that by using the aforementioned ensemble learning approaches it is possible to significantly increase the performance of the generated dispatching rules.

Keywords

Dispatching rules Genetic programming Scheduling Unrelated machines environment Ensemble learning 

References

  1. 1.
    A. Allahverdi, J.N.D. Gupta, T. Aldowaisan, A review of scheduling research involving setup considerations. Omega 27(2), 219–239 (1999). doi: 10.1016/S0305-0483(98)00042-5 CrossRefGoogle Scholar
  2. 2.
    A. Allahverdi, C.T. Ng, T.C.E. Cheng, M.Y. Kovalyov, A survey of scheduling problems with setup times or costs. Eur. J. Oper. Res. 187(3), 985–1032 (2008). doi: 10.1016/j.ejor.2006.06.060 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    U. Bhowan, M. Johnston, M. Zhang, X. Yao, Reusing genetic programming for ensemble selection in classification of unbalanced data. IEEE Trans. Evolut. Comput. 18, 893–908 (2013)CrossRefGoogle Scholar
  4. 4.
    U. Bhowan, M. Johnston, M. Zhang, X. Yao, Evolving diverse ensembles using genetic programming for classification with unbalanced data. IEEE Trans. Evolut. Comput. 17(3), 368–386 (2013)CrossRefGoogle Scholar
  5. 5.
    J. Branke, S. Nguyen, C. Pickardt, M. Zhang, Automated design of production scheduling heuristics: a review. IEEE Trans. Evolut. Comput. (2015). doi: 10.1109/TEVC.2015.2429314 Google Scholar
  6. 6.
    L. Breiman, Bagging predictors. Mach. Learn. 24(2), 123–140 (1996). doi: 10.1007/BF00058655 MathSciNetMATHGoogle Scholar
  7. 7.
    E.K. Burke, M.R. Hyde, G. Kendall, G. Ochoa, E. Ozcan, J.R. Woodward, Exploring hyper-heuristic methodologies with genetic programming. Comput. Intell. 1, 177–201 (2009). doi: 10.1007/978-3-642-01799-5_6 CrossRefMATHGoogle Scholar
  8. 8.
    E.K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, J.R. Woodward, A classification of hyper-heuristics approaches. Handb. Metaheuristics 57, 449–468 (2010). doi: 10.1007/978-1-4419-1665-5_15 CrossRefGoogle Scholar
  9. 9.
    C. Dimopoulos, A.M.S. Zalzala, A genetic programming heuristic for the one-machine total tardiness problem, in Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999, vol. 3, no. 1 (1999), pp. 2207–2214. doi: 10.1109/CEC.1999.785549
  10. 10.
    M. Đurasević, D. Jakobović, K. Knežević, Adaptive scheduling on unrelated machines with genetic programming. Appl. Soft Comput. 48, 419–430 (2016). doi: 10.1016/j.asoc.2016.07.025 CrossRefGoogle Scholar
  11. 11.
    C. Ferreira, Gene expression programming : a new adaptive algorithm for solving problems. Complex Syst. 13(2), 1–22 (2001)MathSciNetMATHGoogle Scholar
  12. 12.
    G. Folino, C. Pizzuti, G. Spezzano, GP Ensemble for Distributed Intrusion Detection Systems (Springer, Berlin, 2005), pp. 54–62Google Scholar
  13. 13.
    G. Folino, C. Pizzuti, G. Spezzano, Training distributed GP ensemble with a selective algorithm based on clustering and pruning for pattern classification. IEEE Trans. Evolut. Comput. 12(4), 458–468 (2008)CrossRefGoogle Scholar
  14. 14.
    Y. Freund, R.E. Schapire, A desicion-theoretic generalization of on-line learning and an application to boosting, in European Conference on Computational Learning Theory (Springer, 1995), pp. 23–37Google Scholar
  15. 15.
    E. Hart, K. Sim, A hyper-heuristic ensemble method for static job-shop scheduling. Evolut. Comput. 24(4), 609–635 (2016)CrossRefGoogle Scholar
  16. 16.
    T. Hildebrandt, J. Heger, B. Scholz-Reiter, Towards improved dispatching rules for complex shop floor scenarios: a genetic programming approach, in GECCO ’10: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (2010), pp. 257–264. doi: 10.1145/1830483.1830530
  17. 17.
    L. Hong, S.E. Page, Groups of diverse problem solvers can outperform groups of high-ability problem solvers. Proc. Natl. Acad. Sci. USA 101(46), 16385–16389 (2004)Google Scholar
  18. 18.
    R. Hunt, M. Johnston, R. Hunt, M. Johnston, Evolving “Less-myopic ” Scheduling Rules for Dynamic Job Shop Scheduling with Genetic Programming, pp. 927–934Google Scholar
  19. 19.
    H. Iba, Bagging, boosting, and bloating in genetic programming, in Proceedings of the 1st Annual Conference on Genetic and Evolutionary Computation—Volume 2, GECCO’99 (Morgan Kaufmann Publishers Inc., 1999), pp. 1053–1060Google Scholar
  20. 20.
    D. Jakobović, Evolutionary computation framework. http://gp.zemris.fer.hr/ecf
  21. 21.
    D. Jakobović, Project site. http://gp.zemris.fer.hr/scheduling/
  22. 22.
    D. Jakobović, L. Jelenković, L. Budin, Genetic programming heuristics for multiple machine scheduling, in Proceedings of the 10th European Conference on Genetic Programming, vol. 4445 (2007), pp. 321–330. doi: 10.1007/978-3-540-71605-1_30
  23. 23.
    D. Jakobović, K. Marasović, Evolving priority scheduling heuristics with genetic programming. Appl. Soft Comput. J. 12(9), 2781–2789 (2012). doi: 10.1016/j.asoc.2012.03.065 CrossRefGoogle Scholar
  24. 24.
    J.R. Koza, Human-competitive results produced by genetic programming. Genet. Program. Evolvable Mach. 11(3–4), 251–284 (2010). doi: 10.1007/s10710-010-9112-3 CrossRefGoogle Scholar
  25. 25.
    K. Miyashita, Job-shop scheduling with genetic programming, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2000) (2000), pp. 505–512Google Scholar
  26. 26.
    S. Nguyen, K.C. Tan, A Dispatching Rule Based Genetic Algorithm for Order Acceptance and Scheduling (2015), pp. 433–440Google Scholar
  27. 27.
    S. Nguyen, M. Zhang, M. Johnston, A Sequential Genetic Programming Method to Learn Forward Construction Heuristics for Order Acceptance and Scheduling (2014), pp. 1824–1831. doi: 10.1109/CEC.2014.6900347
  28. 28.
    S. Nguyen, M. Zhang, M. Johnston, K.C. Tan, A coevolution genetic programming method to evolve scheduling policies for dynamic multi-objective job shop scheduling problems, in 2012 IEEE Congress on Evolutionary Computation, CEC 2012 (i) (2012), pp. 10–15. doi: 10.1109/CEC.2012.6252968
  29. 29.
    S. Nguyen, M. Zhang, K.C. Tan, Enhancing genetic programming based hyper-heuristics for dynamic multi-objective job shop scheduling problems, in 2015 IEEE Congress on Evolutionary Computation (CEC) (2015), pp. 2781–2788. doi: 10.1109/CEC.2015.7257234
  30. 30.
    S. Nguyen, M. Zhang, M. Johnston, K.C. Tan, A computational study of representations in genetic programming to evolve dispatching rules for the job shop scheduling problem. IEEE Trans. Evolut. Comput. 17(5), 621–639 (2013). doi: 10.1109/TEVC.2012.2227326 CrossRefGoogle Scholar
  31. 31.
    S. Nguyen, M. Zhang, M. Johnston, K.C. Tan, Dynamic multi-objective job shop scheduling: a genetic programming approach, in Automated Scheduling and Planning, Studies in Computational Intelligence, vol. 505, ed. by A.S. Uyar, E. Ozcan, N. Urquhart (Springer, Berlin, 2013), pp. 251–282CrossRefGoogle Scholar
  32. 32.
    S. Nguyen, M. Zhang, M. Johnston, K.C. Tan, Learning iterative dispatching rules for job shop scheduling with genetic programming. Int. J. Adv. Manuf. Technol. 67(1–4), 85–100 (2013). doi: 10.1007/s00170-013-4756-9 CrossRefGoogle Scholar
  33. 33.
    S. Nguyen, M. Zhang, M. Johnston, K.C. Tan, Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming. IEEE Trans. Evolut. Comput. 18(2), 193–208 (2014). doi: 10.1109/TEVC.2013.2248159 CrossRefGoogle Scholar
  34. 34.
    L. Nie, L. Gao, P. Li, L. Zhang, Application of gene expression programming on dynamic job shop scheduling problem, in Proceedings of the 2011 15th International Conference on Computer Supported Cooperative Work in Design (CSCWD) (2011), pp. 291–295. doi: 10.1109/CSCWD.2011.5960088
  35. 35.
    L. Nie, X. Shao, L. Gao, W. Li, Evolving scheduling rules with gene expression programming for dynamic single-machine scheduling problems. Int. J. Adv. Manuf. Technol. 50(5–8), 729–747 (2010). doi: 10.1007/s00170-010-2518-5 CrossRefGoogle Scholar
  36. 36.
    G. Paris, D. Robilliard, C. Fonlupt, Applying boosting techniques to genetic programming, in Artificial Evolution 5th International Conference, Evolution Artificielle, EA 2001, vol. 2310 (2001), pp. 267–278. doi: 10.1007/3-540-46033-0_22
  37. 37.
    J. Park, S. Nguyen, M. Zhang, M. Johnston, Genetic programming for order acceptance and scheduling, in 2013 IEEE Congress on Evolutionary Computation, CEC 2013, vol. 3 (2013), pp. 1005–1012. doi: 10.1109/CEC.2013.6557677
  38. 38.
    J. Park, S. Nguyen, M. Zhang, M. Johnston, Evolving ensembles of dispatching rules using genetic programming for job shop scheduling. EuroGP 1, 92–104 (2015)Google Scholar
  39. 39.
    F. Peng, K. Tang, G. Chen, X. Yao, Population-based algorithm portfolios for numerical optimization. IEEE Trans. Evolut. Comput. 14(5), 782–800 (2010)CrossRefGoogle Scholar
  40. 40.
    M. Pinedo, Scheduling Theory, Algorithms and Systems, 4th edn. (Springer US, Boston, 2012)MATHGoogle Scholar
  41. 41.
    R. Poli, W.B. Langdon, N.F. McPhee, A field guide to genetic programming. Published via http://lulu.com and freely available at http://www.gp-field-guide.org.uk (2008). (With contributions by J. R. Koza)Google Scholar
  42. 42.
    R. Polikar, Ensemble Learn. 4(1), 2776 (2009)Google Scholar
  43. 43.
    M.A. Potter, K.A.D. Jong, A cooperative coevolutionary approach to function optimization, in Proceedings of the International Conference on Evolutionary Computation. The Third Conference on Parallel Problem Solving from Nature: Parallel Problem Solving from Nature, PPSN III (Springer, London, 1994), pp. 249–257. http://dl.acm.org/citation.cfm?id=645822.670374
  44. 44.
    L.V.D. Souza, A.T.R. Pozo, A.C. Neto, J.M.C. Rosa, Genetic Programming and Boosting Technique to Improve Time Series Forecasting, in Evolutionary Computation (2009). doi: 10.5772/9617
  45. 45.
    J.C. Tay, N.B. Ho, Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems. Comput. Ind. Eng. 54(3), 453–473 (2008). doi: 10.1016/j.cie.2007.08.008 CrossRefGoogle Scholar
  46. 46.
    S.Y. Yuen, X. Zhang, On composing an algorithm portfolio. Memet. Comput. 7(3), 203–214 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and ComputingUniversity of ZagrebZagrebCroatia

Personalised recommendations