Skip to main content
Log in

A univariate marginal distribution algorithm based on extreme elitism and its application to the robotic inverse displacement problem

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

In this paper, a univariate marginal distribution algorithm in continuous domain (UMDA C ) based on extreme elitism (EEUMDA C ) is proposed for solving the inverse displacement problem (IDP) of robotic manipulators. This algorithm highlights the effect of a few top best solutions to form a primary evolution direction and obtains a fast convergence rate. Then it is implemented to determine the IDP of a 4-degree-of-freedom (DOF) Barrett WAM robotic arm. After that, the algorithm is combined with differential evolution (EEUMDA C -DE) to solve the IDP of a 7-DOF Barrett WAM robotic arm. In addition, three other heuristic optimization algorithms (enhanced leader particle swarm optimization, intersect mutation differential evolution, and evolution strategies) are applied to find the IDP solution of the 7-DOF arm and their performance is compared with that of EEUMDA C -DE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Pelikan, D.E. Goldberg, F.G. Lobo, A survey of optimization by building and using probabilistic models. Comput. Optim. Appl. 21(1), 5–20 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Mühlenbein, G. Paaß, From recombination of genes to the estimation of distributions I. binary parameters, in Proceedings of the 4th International Conference on Parallel Problem Solving from Nature, vol. 1141 (1996), pp. 178–187

  3. P. Larrañaga, R. Etxeberria, J.A. Lozano, J.M. Peña, Optimization in continuous domains by learning and simulation of Gaussian networks. A Workshop within the 2000 Genetic and Evolutionary Computation Conference, Las Vegas, USA (2000)

  4. S. Bashir, M. Maeem, A.A. Khan, S. Shah, An application of univariate marginal distribution algorithm in MIMO communication systems. Int. J. Commun Syst 23(1), 109–124 (2009)

    Google Scholar 

  5. W. Gu, Y.G. Wu, G.Y. Zhang, A hybrid univariate marginal distribution algorithm for dynamic economic dispatch of units considering valve-point effects and ramp rates. Int. Trans. Electrical Energy Syst. 25(2), 374–392 (2013)

    Article  Google Scholar 

  6. I. Cruz-Aceves, J.G. Avina-Cervantes, J.M. Lopez-Hernandez, M.G. Garcia-Hernandez, M. Torres-Cisneros, H.J. Estrada-Garcia, A. Hernandez-Aguirre, Automatic image segmentation using active contours with univariate marginal distribution. Math. Probl. Eng. 2013, 419018 (2013). doi:10.1155/2013/419018

    Article  Google Scholar 

  7. Y. Kang, Z.M. Wang, Y. Lin, Y. Zhang, An improved estimation of distribution algorithm for dynamic voltage scaling problem in heterogeneous system. Appl. Mech. Mater. 631, 373–377 (2014)

    Article  Google Scholar 

  8. P. Filipiak, P. Lipinski, Univariate marginal distribution algorithm with Markov chain predictor in continuous dynamic environments, in Proceedings of 15th Conference on Intelligent Data Engineering and Automated LearningIDEAL. vol. 8669 (2014), pp. 404–411

  9. J. Slezak, T. Gotthans, Design of passive analog electronic circuits using hybrid modified UMDA algorithm. Radioengineering 24(1), 161–170 (2015)

    Article  Google Scholar 

  10. J.Q. Gan, E. Oyama, E.M. Rosales, H. Hu, A complete analytical solution to the inverse kinematics of the pioneer 2 robotic arm. Robotica 23(1), 123–129 (2005)

    Article  Google Scholar 

  11. M. Shimizu, H. Kakuya, W. Yoon, K. Kitagak, K. Kosuge, Analytical inverse kinematic computation for 7-DOF redundant manipulators with joint limits and its application to redundancy resolution. IEEE Trans. Robot. 24(5), 1131–1142 (2008)

    Article  Google Scholar 

  12. I.A. Vasilyev, A.M. Lyashin, Analytical solution to inverse kinematic problem for 6-DOF robot-manipulator. Autom. Remote Control 71(10), 2195–2199 (2010)

    Article  MATH  Google Scholar 

  13. Y.J. Zhao, T. Huang, Z.Y. Yang, A new numerical algorithm for the inverse position analysis of all serial manipulators. Robotica 24, 373–376 (2006)

    Article  Google Scholar 

  14. S. Kucuk, Z. Bingul, Inverse kinematics solutions for industrial robot manipulators with offset wrists. Appl. Math. Model. 38, 1983–1999 (2014)

    Article  MathSciNet  Google Scholar 

  15. V. Kumara, S. Sena, S.S. Royb, S.K. Dasa, S.N. Shomea, Inverse kinematics of redundant manipulator using interval newton method. Int. J. Eng. Manuf. (2015). doi:10.5815/ijem.2015.02.03

    Google Scholar 

  16. S.C. Shital, N.R. Babu, Comparison of RBF and MLP neural networks to solve inverse kinematic problem for 6R serial robot by a fusion approach. Eng. Appl. Artif. Intell. 23(7), 1083–1092 (2010)

    Article  Google Scholar 

  17. M. Ayyıldız, K. Çetinkaya, Comparison of four different heuristic optimization algorithms for the inverse kinematics solution of a real 4-DOF serial robot manipulator. Neural Comput. Appl. 27(4), 825–836 (2016)

    Article  Google Scholar 

  18. Y. H. Shi, R. Eberhart, A modified particle swarm optimizer. in Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence (1998). doi:10.1109/ICEC.1998.699146

  19. K. Price, R. Storn, Homepage of differential evolution (2006). http://www1.icsi.berkeley.edu/~storn/code.html

  20. T. Bäck, H.-P. Schwefel, An overview of evolutionary algorithms for parameter optimization. Evol. Comput. 1(1), 1–23 (1993)

    Article  Google Scholar 

  21. H.-P. Schwefel, Collective phenomena in evolutionary systems. In Preprints of the 31st Annual Meeting of the International Society for General System Research, Budapest. vol 2 (1987), pp. 1025–1032

  22. L.T. Wang, C.C. Chen, A combined optimization method for solving the inverse kinematics problem of mechanical manipulators. IEEE Trans. Robot. Autom. 7(4), 489–499 (1991)

    Article  MathSciNet  Google Scholar 

  23. B. Balaguer, S. Carpin, Kinematics and Calibration for a Robot Comprised of Two Barrett WAMs and a Point Grey Bumblebee2 Stereo Camera, School of Engineering Technical Report (University of California, Merced, 2012)

    Google Scholar 

  24. H.-G. Beyer, H.-P. Schwefel, Evolution strategies: a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. A.R. Jordehi, Enhanced leader PSO (ELPSO): a new PSO variant for solving global optimisation problems. Appl. Soft Comput. 26(2015), 401–417 (2015)

    Article  Google Scholar 

  26. Y.Z. Zhou, X.Y. Li, L. Gao, A differential evolution algorithm with intersect mutation operator. Appl. Soft Comput. 13(2013), 390–401 (2013)

    Article  Google Scholar 

  27. R. Köker, A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization. Inform Sci. 222, 528–543 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. D.H. Wolpert, W.G. Macready, No free lunch theorems or optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  29. Y.C. Ho, D.L. Pepyne, M.A. Simaan, Simple explanation of the No-Free-Lunch theorem and its implications. J. Optim. Theory Appl. 115(3), 549–570 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Y. Gao, J. Culberson, Space complexity of estimation of distribution algorithms. Evol. Comput. 13(1), 125–143 (2005)

    Article  Google Scholar 

  31. H. Müehlenbein, T.V. Mahnig, Convergence theory and applications of the factorized distribution algorithm. J. Comput. Inf. Technol. 7(1), 19–32 (1999)

    Google Scholar 

  32. M. Pelikan, D.E. Goldberg, E.Cantúaz, BOA: the Bayesian optimization algorithm. in Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99, vol 1, (1999), pp. 525–532

  33. M. Hauschild, M. Pelikan, An introduction and survey of estimation of distribution algorithms. Swarm Evol. Comput. 1(3), 111–128 (2011)

    Article  Google Scholar 

  34. P. Larrañaga, J.A. Lozano, Estimation of distribution algorithms: a new tool for evolutionary computation (Kluwer Academic Publishers, New York, 2002), p. 186

    Book  MATH  Google Scholar 

Download references

Acknowledgment

This work has been supported by research grants from the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Canada Foundation for Innovation (CFI), the British Columbia Knowledge Development Fund (BCKDF) and the Canada Research Chair in Mechatronics and Industrial Automation held by Clarence W. de Silva.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Gao.

Appendix

Appendix

The appendix shows the expression of \( \Delta \) p and \( \Delta o \) of a numerical example on the 7-DOF Barrett WAM arm. Here c i  = cos(\( \theta \) i ), s i  = sin(\( \theta \) i ), i = 1, 2,…,7.

$$ \begin{aligned} \Delta p(\theta_{1} ,\theta_{2} , \ldots ,\theta_{7} ) = (0.55c_{1} s_{2} - 0.045s_{1} s_{3} + 0.045c_{3} (s_{1} s_{3} - c_{1} c_{2} c_{3} ){\kern 1pt} - 0.3s_{4} (s_{1} s_{3} {\kern 1pt} - c_{1} c_{2} c_{3} ) - {\kern 1pt} 0.06s_{6} (c_{5} (c_{4} (s_{1} s_{3} - c_{1} c_{2} c_{3} ) + c_{1} s_{2} s_{4} ) + {\kern 1pt} s_{5} (c_{3} \hfill \\ s_{1} + c_{1} c_{2} s_{3} )) - 0.06c_{6} (s_{4} (s_{1} s_{3} - c_{1} c_{2} c_{3} ) - c_{1} c_{4} s_{2} ) + 0.3c_{1} c_{4} s_{2} + 0.045c_{1} s_{2} s_{3} {\kern 1pt} + 0.045c_{1} c_{2} c_{{3{\kern 1pt} }} - 0.2401)^{2} {\kern 1pt} + (0.045c_{1} s_{3} + 0.55s_{1} s_{2} {\kern 1pt} + 0.06 \hfill \\ s_{{6{\kern 1pt} }} (c_{{5{\kern 1pt} }} (c_{4} (c_{1} s_{3} + {\kern 1pt} c_{2} c_{3} s_{1} ) - s_{1} s_{{2{\kern 1pt} }} s_{4} ) + s_{5} (c_{1} c_{{3{\kern 1pt} }} - c_{{2{\kern 1pt} }} s_{{1{\kern 1pt} }} s_{3} )){\kern 1pt} + 0.06c_{6} (s_{{4{\kern 1pt} }} (c_{{1{\kern 1pt} }} s_{3} + c_{{2{\kern 1pt} }} c_{3} s_{1} ){\kern 1pt} + c_{4} s_{1} s_{2} ){\kern 1pt} - 0.045c_{3} (c_{1} s_{{3{\kern 1pt} }} + c_{2} c_{3} s_{1} ) + 0.3s_{4} (c_{1} s_{3} + c_{2} c_{3} \hfill \\ s_{1} ) + 0.045c_{2} c_{3} s_{1} + 0.3c_{4} s_{1} s_{2} + 0.045s_{1} s_{2} s_{3} - 0.2486)^{2} {\kern 1pt} + (0.55c_{2} + 0.3c_{2} c_{4} + 0.045c_{2} s_{3} - 0.045c_{3} s_{2} - 0.06s_{6} (c_{5} (c_{2} s_{4} + c_{3} c_{4} s_{2} ) - s_{2} {\kern 1pt} \hfill \\ s_{3} s_{5} ) + 0.06c_{6} (c_{2} c_{4} - c_{3} {\kern 1pt} s_{{2{\kern 1pt} }} s_{4} ){\kern 1pt} + 0.045c_{3}^{2} s2 - 0.3c_{3} s_{2} s_{4} - 0.8382)^{2} \hfill \\ \end{aligned} $$
$$\begin{aligned} & \Delta o(\theta_{1} ,\theta_{2} , \ldots ,\theta_{7} ) = (0.55c_{1} s_{2} - 0.045s_{1} s_{3} + 0.045c_{3} (s_{1} s_{3} - c_{1} c_{2} c_{3} ) - 0.3s_{4} (s_{1} s_{3} - c_{1} c_{2} c_{3} ) - 0.06s_{6} (c_{5} (c_{4} (s_{1} s_{3} - c_{1} c_{2}c_{3} ) + c_{1} s_{2} s_{4} ) + s_{5} (c_{3} s_{1} \\ & \quad +c_{1} c_{2} s_{3} ))- 0.06c_{6} (s_{4} (s_{1} s_{3} - c_{1} c_{2}c_{3} )- c_{1} c_{4} s_{2} )+ 0.3c_{1} c_{4} s_{2} + 0.045c_{1}s_{2} s_{3} + 0.045c_{1} c_{2} c_{3} - 0.2401)^{2} + (0.7788c_{7}(s_{5} (c_{4} (c_{1} s_{3} + c_{2} c_{3} s_{1} )- s_{1} s_{2} s_{4}) \\&\quad - c_{5} (c_{1} c_{3} - c_{2} s_{1} s_{3} )) + 0.4040c_{7}(s_{5} (c_{4} (s_{1} s_{3} - c_{1} c_{2} c_{3} ) - c_{1} s_{2} s_{4})- c_{5} (c_{3} s_{1} + c_{1} c_{2} s_{3} )) + 0.4799s_{7} (c_{6}(c_{5} (c_{2} s_{4} + c_{3} c_{4} s_{2} ) - s_{2} s_{3} s_{5} )+s_{6} (c_{2} c_{4} - c_{3} s_{2} \\&\quad s_{4} )) + 0.4799 c_{7}(s_{5} (c_{2} s_{4} + c_{3} c_{4} s_{2} ) + c_{{5}} s_{2} s_{3} )+0.404s_{7} (c_{6} (c_{5} (c_{4} (s_{1} s_{3} - c_{1} c_{2} c_{3} ) +c_{1} s_{2} s_{4} ) + s_{5} (c_{3} s_{1} + c_{1} c_{2} s_{3} )) -s_{6} (s_{4} (s_{1} s_{3} - c_{1} c_{2} c_{3} ) - c_{1} c_{4}s_{2} )) \\&\quad + 0.7788s_{7} (c_{6} (c_{5} (c_{4} (c_{1} s_{3}+ c2c_{3} s_{1} ) - s_{1} s_{2} s_{4} ) + s_{5} (c_{1} c_{3} -c_{2} s_{1} s_{3} )) - s_{6} (s_{4} (c_{1} s_{3} + c_{2} c_{3}s_{1} ) + c_{4} s_{1} s_{2} )) + 1.0)^{2} + (0.4150s_{6} (c_{5}(c_{4} (c_{1} s_{3} + c_{2} c_{3} s_{1} ) \\&\quad - s_{1} s_{2}s_{4} ) + s_{5} (c_{1} c_{3} - c_{2} s_{1} s_{3} )) - 0.8771s_{6}(c_{5} (c_{2} s_{4} + c_{3} c_{4} s_{2} ) - s_{2} s_{3} s_{5} ) +0.4150 c_{6} (s_{4} (c_{{1 }} s_{3} + c_{2} c_{3} s_{1} ) +c_{4} s_{1} s_{2} ) + 0.8771c_{6} (c_{2} c_{4} - c_{3} s_{2}s_{4} ) + \\&\quad 0.2419 s_{6} (c_{5} (c_{4} (s_{1} s_{3} -c_{1} c_{2} c_{3} ) + c_{1} s_{2} s_{4} ) + s_{5} (c_{3} s_{1} +c_{1} c_{2} s_{3} )) + 0.2419c_{6} (s_{4} (s_{1} s_{3} - c_{1}c_{2} c_{3} ) - c_{1} c_{4} s_{2} ) - 1.0)^{2} + (0.4704s_{7}(s_{5} (c_{4} (c_{1} s_{3} + c_{2} c_{3} \\&\quad s_{1} ) - s_{1}s_{2} s_{4} ) - c_{5} (c_{1} c_{3} - c_{2} s_{1} s_{3} )) -0.8822s_{7} (s_{5} (c_{4} (s_{1} s_{3} - c_{1} c_{2} c_{3} ) +c_{1} s_{2} s_{4} ) - c_{5} (c_{3} s_{1} + c_{{1 }} c_{2} s_{3})) + 0.0207c_{7} (c_{6} (c_{5} (c_{2} s_{4} + c_{3} c_{4} s_{2} ) -s_{2} s_{3} s_{5} ) + s_{6} \\&\quad (c_{2} c_{4} - c_{3} s_{2}s_{4} )) + 0.8822c_{7} (c_{6} (c_{5} (c_{4} (s_{{1 }} s_{3} -c_{1} c_{2} c_{3} ) + c_{1} s_{2} s_{4} ) + s_{5} (c_{3} s_{1} +c_{1} c_{2} s_{3} )) - s_{6} (s_{4} (s_{1} s_{3} - c_{1} c_{2}c_{3} ) - c_{1} c_{4} s_{2} )) - 0.0207s_{7} (s_{5} (c_{2} s_{4}+ c_{3} c_{4} s_{2} ) + \\&\quad c_{5} s_{2} s_{2} s_{3} ) -0.4704c_{7} (c_{6} (c_{5} (c_{4} (c_{1} c_{1} s_{3} + c_{2} c_{3}s_{1} ) - s_{1} s_{2} s_{4} ) + s_{5} (c_{1} c_{3} - c_{2} s_{1}s_{3} )) - s_{6} (s_{4} (c_{1} s_{3} + c_{2} c_{{2 }} c_{3} s_{1} )+ c_{4} s_{1} s_{2} )) + 1.0)^{2} + (0.045c_{1} s_{3} + 0.55\\&\quad s_{1} s_{2} + 0.06s_{6} (c_{5} (c_{4} (c_{1} s_{3} +c_{2} c_{3} s_{1} ) - s_{1} s_{2} s_{4} ) + s_{5} (c_{1} c_{3} -c_{2} c_{2} s_{1} s_{3} )) + c_{6} (s_{4} (c_{1} s_{3} + c_{{2 }}c_{3} s_{1} ) + c_{4} s_{1} s_{2} ) - 0.045 c_{3} (c_{1} c_{1}s_{3} + c_{2} c_{2} c_{3} s_{1} ) + 0.3 s_{4} (c_{{1 }} s_{3} +c_{2} \\&\quad c_{3} c_{3} s_{1} ) + 0.045c_{2} c_{3} s_{1} +0.3c_{4} s_{1} s_{2} + 0.045 s_{1} s_{2} s_{3} - 0.2486)^{2} +(0.55c_{2} + 0.3c_{2} c_{4} + 0.045c_{2} s_{3} - 0.045 c_{3}s_{2} - 0.06s_{6} (c_{5} (c_{2} s_{4} + c_{3} c_{4} s_{2} ) -s_{2} s_{3} s_{5} ) \\&\quad + 0.06c6(c_{2} c_{4} - c_{3}s_{2} s_{4} ) + 0.045c_{3}^{2} s_{2} - 0.3c_{3} s_{2} s_{4} -0.8382)^{2} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, S., de Silva, C.W. A univariate marginal distribution algorithm based on extreme elitism and its application to the robotic inverse displacement problem. Genet Program Evolvable Mach 18, 283–312 (2017). https://doi.org/10.1007/s10710-017-9298-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-017-9298-8

Keywords

Navigation