A. Agresti, B.A. Coull, Approximate is better than ’exact’ for interval estimation of binomial proportions. Am. Stat. 52, 119–126 (1998)
MathSciNet
Google Scholar
P.J. Angeline, An investigation into the sensitivity of genetic programming to the frequency of leaf selection during subtree crossover. in Proceedings of the First Annual Conference on Genetic Programming (GECCO 1996). (MIT Press, Cambridge, MA, 1996), pp. 21–29
D.F. Barrero, D. Camacho, M.D. R-Moreno, Confidence intervals of success rates in evolutionary computation. in Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation (GECCO 2010). (ACM, Portland, Oregon, 2010), pp. 975–976. doi:10.1145/1830483.1830657
D.F. Barrero, B. Castaño, M.D. R-Moreno, D. Camacho, Statistical Distribution of Generation-to-Success in GP: Application to Model Accumulated Success Probability, in Proceedings of the 14th European Conference on Genetic Programming, EuroGP 2011, LNCS, vol. 6621, ed. by S. Silva, J.A. Foster, M. Nicolau, M. Giacobini, P. Machado (Springer, Turin, 2011), pp. 155–166
Google Scholar
D.F. Barrero, M.D. R-Moreno, B. Castano, D. Camacho, An empirical study on the accuracy of computational effort in genetic programming, in Proceedings of the 2011 IEEE Congress on Evolutionary Computation. IEEE Computational Intelligence Society, ed. by A.E. Smith (IEEE Press, New Orleans, 2011), pp. 1169–1176
Google Scholar
L.D. Brown, T.T. Cai, A. Dasgupta, Interval estimation for a binomial proportion. Stat. Sci. 16, 101–133 (2001)
MATH
MathSciNet
Google Scholar
L.D. Brown, T.T. Cai, A. Dasgupta, Confidence intervals for a binomial proportion and asymptotic expansions. Ann. Stat. 30(1), 160–201 (2002)
Article
MATH
MathSciNet
Google Scholar
M. Chiarandini, T. Stützle, Experimental Evaluation of Course Timetabling Algorithms. Tech. Rep. AIDA-02-05, Intellectics Group, Computer Science Department, Darmstadt University of Technology, Darmstadt, Germany (2002)
S. Christensen, F. Oppacher, An analysis of Koza’s computational effort statistic for genetic programming. in Proceedings of the 5th European Conference on Genetic Programming (EuroGP 2002). (Springer, London, 2002), pp. 182–191
C. Clopper, S. Pearson, The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 26, 404–413 (1934)
Article
MATH
Google Scholar
D. Frost, I. Rish, L. Vila, Summarizing CSP hardness with continuous probability distributions. in Proceedings of the Fourteenth National Conference on Artificial Intelligence and Ninth Conference on Innovative Applications of Artificial Intelligence, AAAI’97/IAAI’97. (AAAI Press, Menlo Park, 1997), pp. 327–333
A. Gelman, J.B. Carlin, H.S. Stern, D.B. Rubin, Bayesian Data Analysis, Second Edition (Chapman & Hall/CRC Texts in Statistical Science), 2nd edn. (Chapman and Hall, London, 2003)
Google Scholar
H.H. Hoos, T. Sttzle, Evaluating Las Vegas algorithms—pitfalls and remedies. in Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI-98). (Morgan Kaufmann Publishers, Los Altos, CA, 1998), pp. 238–245
A. Kaufmann, D. Grounchko, R. Cruon, Mathematical Models for the Study of the Reliability of Systems, Mathematics in Science and Engineering, vol. 124 (Academic Press, New York, 1977)
Google Scholar
M. Keijzer, V. Babovic, C. Ryan, M. O’Neill, M. Cattolico, Adaptive logic programming. in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001). (Morgan Kaufmann, San Francisco, CA, 2001), pp. 42–49
J. Koza, Genetic Programming: On the programming of Computers by Means of Natural Selection (MIT Press, Cambrige, MA, 1992)
MATH
Google Scholar
P.S. Laplace, Théorie Analytique des probabilités (Mme Ve Courcier, Paris, 1812)
MATH
Google Scholar
E. Limpert, W.A. Stahel, M. Abbt, Log-normal distributions across the sciences: keys and clues. Bioscience 51(5), 341–352 (2001)
Article
Google Scholar
D.C. Montgomery, G.C. Runger, Applied Statistics and Probability for Engineers, 4th edn. (Wiley, New York, 2006)
Google Scholar
J.B. Mouret, S. Doncieux, Encouraging behavioral diversity in evolutionary robotics: an empirical study. Evol. Comput. 20(1), 91–133 (2012)
Article
Google Scholar
R. Myers, E.R. Hancock, Empirical modelling of genetic algorithms. Evol. Comput. 9(4), 461–493 (2001)
Article
Google Scholar
R.G. Newcombe, Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat. Med. 17(8), 857–872 (1998)
Article
Google Scholar
J. Niehaus, W. Banzhaf, More on computational effort statistics for genetic programming. in Genetic Programming, Proceedings of EuroGP’2003, LNCS, vol. 2610. (Springer, Essex, 2003), pp. 164–172
R. Poli, L. Vanneschi, W. Langdon, N. McPhee, Theoretical results in Genetic Programming: the next ten years? Genet. Program Evolvable Mach. 11(3), 285–320 (2010)
Article
Google Scholar
R. Sharma, Bayes approach to interval estimation of a binomial parameter. Ann. Inst. Stat. Math. 27(1), 259–267 (1975)
Article
MATH
Google Scholar
M. Walker, H. Edwards, C. Messom, The reliability of confidence intervals for computational effort comparisons. in Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation (GECCO 2007). (ACM, New York, NY, 2007), pp. 1716–1723
M. Walker, H. Edwards, C.H. Messom, Confidence intervals for computational effort comparisons. in EuroGP, pp. 23–32 (2007)
E.B. Wilson, Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 22, 309–316 (1927)
Google Scholar