Skip to main content
Log in

Investigating fitness functions for a hyper-heuristic evolutionary algorithm in the context of balanced and imbalanced data classification

  • Published:
Genetic Programming and Evolvable Machines Aims and scope Submit manuscript

Abstract

In this paper, we analyse in detail the impact of different strategies to be used as fitness function during the evolutionary cycle of a hyper-heuristic evolutionary algorithm that automatically designs decision-tree induction algorithms (HEAD-DT). We divide the experimental scheme into two distinct scenarios: (1) evolving a decision-tree induction algorithm from multiple balanced data sets; and (2) evolving a decision-tree induction algorithm from multiple imbalanced data sets. In each of these scenarios, we analyse the difference in performance of well-known classification performance measures such as accuracy, F-Measure, AUC, recall, and also a lesser-known criterion, namely the relative accuracy improvement. In addition, we analyse different schemes of aggregation, such as simple average, median, and harmonic mean. Finally, we verify whether the best-performing fitness functions are capable of providing HEAD-DT with algorithms more effective than traditional decision-tree induction algorithms like C4.5, CART, and REPTree. Experimental results indicate that HEAD-DT is a good option for generating algorithms tailored to (im)balanced data, since it outperforms state-of-the-art decision-tree induction algorithms with statistical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R.C. Barros, M.P. Basgalupp, A.C.P.L.F. de Carvalho, A.A. Freitas, A survey of evolutionary algorithms for decision-tree induction. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(3), 291–312 (2012)

    Article  Google Scholar 

  2. R.C. Barros, M.P. Basgalupp, A.C.P.L.F. de Carvalho, A.A. Freitas, A hyper-heuristic evolutionary algorithm for automatically designing decision-tree algorithms, in 14th Genetic and Evolutionary Computation Conference (GECCO 2012) (2012), pp. 1237–1244

  3. R.C. Barros, M.P. Basgalupp, A.C.P.L.F. de Carvalho, A.A. Freitas, Automatic design of decision-tree algorithms with evolutionary algorithms. Evol. Comput. 21(4), 659–684 (2013)

  4. R.C. Barros, M.P. Basgalupp, A.A. Freitas, A.C.P.L.F. de Carvalho, Evolutionary design of decision-tree algorithms tailored to microarray gene expression data sets. IEEE Trans. Evol. Comput. in press (2014)

  5. R.C. Barros, A.T. Winck, K.S. Machado, M.P. Basgalupp, A.C.P.L.F. de Carvalho, D.D. Ruiz, O.S. de Souza, Automatic design of decision-tree induction algorithms tailored to flexible-receptor docking data. BMC Bioinform. 13(310), 1–14 (2012)

  6. M.P. Basgalupp, R.C. Barros, T.S. da Silva, A.C.P.L.F. de Carvalho, Software effort prediction: a hyper-heuristic decision-tree based approach, in 28th Annual ACM Symposium on Applied Computing (2013), pp. 1109–1116

  7. L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees (Wadsworth, Belmont, CA, 1984)

    Google Scholar 

  8. C. Coello, A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl. Inf. Syst. 1(3), 129–156 (1999)

    Google Scholar 

  9. P. Cowling, G. Kendall, E. Soubeiga, A hyperheuristic approach to scheduling a sales summit, in Practice and Theory of Automated Timetabling III, Lecture Notes in Computer Science, ed. by E. Burke, W. Erben, vol. 2079 (Springer, Berlin, 2001), pp. 176–190.

  10. A.G.A.C. de Sá, G.L. Pappa, Towards a method for automatically evolving bayesian network classifiers, in Proceeding of the Fifteenth Annual Conference Companion on Genetic and Evolutionary Computation Conference Companion (ACM, New York, NY, USA, 2013), pp. 1505–1512. doi:10.1145/2464576.2482729

  11. B. Delibasic, M. Jovanovic, M. Vukicevic, M. Suknovic, Z. Obradovic, Component-based decision trees for classification. Intell. Data Anal. 15, 1–38 (2011)

    Google Scholar 

  12. J. Demšar, Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)

    MathSciNet  Google Scholar 

  13. T. Fawcett, An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  14. C. Ferri, J. Hernández-Orallo, R. Modroiu, An experimental comparison of performance measures for classification. Pattern Recognit. Lett. 30(1), 27–38 (2009)

    Article  MATH  Google Scholar 

  15. H. Fisher, G.L. Thompson, Probabilistic learning combinations of local job-shop scheduling rules, in Industrial Scheduling, ed. by J.F. Muth, G.L. Thompson (Prentice Hall, Englewood Cliffs, NJ, 1963), pp. 225–251

    Google Scholar 

  16. A. Frank, A. Asuncion, UCI machine learning repository (2010). http://archive.ics.uci.edu/ml

  17. A.A. Freitas, A critical review of multi-objective optimization in data mining: a position paper. SIGKDD Explor. Newsl. 6(2), 77–86 (2004)

    Article  MathSciNet  Google Scholar 

  18. P. Garrido, M.C. Riff, An evolutionary hyperheuristic to solve strip-packing problems, in Proceedings of the 8th International Conference on Intelligent Data Engineering and Automated Learning, IDEAL’07 (Springer, Berlin, 2007), pp. 406–415.

  19. P. Garrido, M.C. Riff, Dvrp: a hard dynamic combinatorial optimisation problem tackled by an evolutionary hyper-heuristic. J. Heuristics 16(6), 795–834 (2010)

    Article  MATH  Google Scholar 

  20. B. Hanczar, J. Hua, C. Sima, J. Weinstein, M. Bittner, E.R. Dougherty, Small-sample precision of ROC-related estimates. Bioinformatics 26(6), 822–830 (2010)

    Article  Google Scholar 

  21. D.J. Hand, Measuring classifier performance: a coherent alternative to the area under the ROC curve. Mach. Learn. 77(1), 103–123 (2009)

    Article  Google Scholar 

  22. N. Japkowicz, S. Stephen, The class imbalance problem: a systematic study. Intell. Data Anal. 6, 429–449 (2002)

    MATH  Google Scholar 

  23. J.M. Lobo, A. Jiménez-Valverde, R. Real, AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17(2), 145–151 (2008)

    Article  Google Scholar 

  24. J.G. Marín-Blázquez, S. Schulenburg, A hyper-heuristic framework with XCS: learning to create novel problem-solving algorithms constructed from simpler algorithmic ingredients, in Proceedings of the 2003–2005 International Conference on Learning Classifier Systems, IWLCS’03-05 (Springer, Berlin, 2007), pp. 193–218.

  25. S.J. Mason, N.E. Graham, Areas beneath the relative operating characteristics (roc) and relative operating levels (rol) curves: statistical significance and interpretation. Q. J. R. Meteorol. Soc. 128(584), 2145–2166 (2002)

    Article  Google Scholar 

  26. G. Ochoa, R. Qu, E.K. Burke, Analyzing the landscape of a graph based hyper-heuristic for timetabling problems, in Proceedings of the 11th Annual conference on Genetic and Evolutionary Computation, GECCO ’09 (ACM, New York, NY, USA, 2009), pp. 341–348

  27. M. Oltean, Evolving evolutionary algorithms using linear genetic programming. Evol. Comput. 13(3), 387–410 (2005)

    Article  Google Scholar 

  28. G.L. Pappa, Automatically Evolving Rule Induction Algorithms with Grammar-Based Genetic Programming. Ph.D. thesis, University of Kent at Canterbury (2007)

  29. G.L. Pappa, A.A. Freitas, Automating the Design of Data Mining Algorithms: An Evolutionary Computation Approach (Springer, Berlin, Heidelberg, 2009)

  30. G.L. Pappa, A.A. Freitas, Evolving rule induction algorithms with multi-objective grammar-based genetic programming. Knowl. Inf. Syst. 19, 283–309 (2009). doi:10.1007/s10115-008-0171-1

    Article  Google Scholar 

  31. G.L. Pappa, G. Ochoa, M.R. Hyde, A.A. Freitas, J. Woodward, J. Swan, Contrasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms. Genet. Program. Evol. 15(1), 3–35 (2013)

  32. D. Powers, Evaluation: from precision, recall and f-measure to ROC, informedness, markedness & correlation. J. Mach. Learn. Technol. 2(1), 37–63 (2011)

    MathSciNet  Google Scholar 

  33. J.R. Quinlan, C4.5: Programs for Machine Learning (Morgan Kaufmann, San Francisco, CA, 1993)

  34. K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  35. P.N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining (Addison-Wesley, Reading, MA, 2005)

    Google Scholar 

  36. H. Terashima-Marín, P. Ross, C. Farías-Zárate, E. López-Camacho, M. Valenzuela-Rendón, Generalized hyper-heuristics for solving 2d regular and irregular packing problems. Ann. Oper. Res. 179(1), 369–392 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  37. J.A. Vázquez-Rodríguez, S. Petrovic, A new dispatching rule based genetic algorithm for the multi-objective job shop problem. J. Heuristics 16(6), 771–793 (2010). doi:10.1007/s10732-009-9120-8

    Article  MATH  Google Scholar 

  38. A. Vella, D. Corne, C. Murphy, Hyper-heuristic decision tree induction. in W CONF NAT BIOINSP COMP (2010), pp. 409–414

  39. I.H. Witten, E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations (Morgan Kaufmann, San Francisco, CA, 1999)

    Google Scholar 

Download references

Acknowledgments

This work was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Project 2009/14325-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo C. Barros.

Additional information

Area Editor for Data Analytics and Knowledge Discovery: Una-May O'Reilly.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (xlsx 138 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barros, R.C., Basgalupp, M.P. & de Carvalho, A.C.P.L.F. Investigating fitness functions for a hyper-heuristic evolutionary algorithm in the context of balanced and imbalanced data classification. Genet Program Evolvable Mach 16, 241–281 (2015). https://doi.org/10.1007/s10710-014-9235-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10710-014-9235-z

Keywords

Navigation