E. Acebo, S. Mateu, Benford’s law for natural and synthetic images, in Computational Aesthetics, ed. by L. Neumann, M. Sbert, B. Gooch, W. Purgathofer (Eurographics Association, Aire-la-Ville, 2005) pp. 169–176
Google Scholar
S. Baluja, D. Pomerleau, T. Jochem, Towards automated artificial evolution for computer-generated images. Connect. Sci. 6(2 and 3), 325–354 (1994)
Article
Google Scholar
M. Bense, Einführung in die informationstheoretische asthetik. Graundlegung und Anwendung in der Texttheorie (Introduction to the Information-theoretical Aesthetics. Foundation and Application to the Text Theory) (1969)
P.J. Bentley (ed.), Evolutionary Design by Computers. (Academic Press, London, 1999)
MATH
Google Scholar
P.J. Bentley, D.W. Corne, Creative Evolutionary Systems. (Academic Press, London, 2002)
Google Scholar
S. Bergen, J.R. Brian, Aesthetic 3d model evolution, in EvoMUSART, pp. 11–22 (2012)
G.D. Birkhoff, Aesthetic Measure. (Harvard University Press, Cambridge, 1933)
MATH
Google Scholar
J. Clune, H. Lipson, Evolving 3d objects with a generative encoding inspired by developmental biology. SIGEVOlution 5(4), 2–12 (2011)
Article
Google Scholar
D. Cohen-Or, O. Sorkine, R. Gal, T. Leyvand, Y. Xu, Color harmonization, in ACM Transactions on Graphics (TOG), pp. 624–630 (2006)
R. Dawkins, The Blind Watchmaker. (Penguin Books, London, 1986)
Google Scholar
S. DiPaola, L. Gabora, Incorporating characteristics of human creativity into an evolutionary art algorithm. Gene. Program. Evol. Mach. 10(2), 97–110 (2009)
Article
Google Scholar
A. Ekårt, D. Sharma, S. Chalakov, Modelling human preference in evolutionary art, in EvoApplications (2), vol. 6625, ed. by C. Di Chio, A. Brabazon, G.A. Di Caro, R. Drechsler, M. Ebner, M. Farooq, J. Grahl, G. Greenfield, C. Prins, J. Romero, G. Squillero, E. Tarantino, A.G.B. Tettamanzi, N. Urquhart, A.S. Uyar (Springer, Berlin, 2011), pp. 303–312
J. Geller, Data mining: practical machine learning tools and techniques with java implementations. SIGMOD Record 31(1), 77 (2002)
Google Scholar
G. Greenfield, On the origins of the term “computational aesthetics”, in Computational Aesthetics, ed. by L. Neumann, M. Sbert, B. Gooch, W. Purgathofer (Eurographics Association, Aire-la-Ville, 2005), pp. 9–12
D. Harwood, T. Ojala, M. Pietikäinen, S. Kelman, L. Davis, Cartr-678-texture classification by center-symmetric auto-correlation, using kullback discrimination of distributions. Technical report, Computer Vision Labratory, Center for Automation Research (University of Maryland, College Park, Maryland, 1993)
E. den Heijer, A.E. Eiben, Using aesthetic measures to evolve art, in IEEE Congress on Evolutionary Computation, pp. 1–8. IEEE (2010)
E. den Heijer, A.E. Eiben, Evolving art using multiple aesthetic measures, in EvoApplications (2), vol. 6625, ed. by C. Di Chio, A. Brabazon, G.A. Di Caro, R. Drechsler, M. Ebner, M. Farooq, J. Grahl, G. Greenfield, C. Prins, J. Romero, G. Squillero, E. Tarantino, A.G.B. Tettamanzi, N. Urquhart, A.S. Uyar (Springer, Berlin, 2011), pp. 234–243
F. Hoenig, Defining computational aesthetics, in Computational Aesthetics ed. by L. Neumann, M.S. Casasayas, B. Gooch, W. Purgathofer, (Eurographics Association, Aire-la-Ville, 2005), pp. 13–18
Google Scholar
S.G. Hornby, J. Bongard, Learning comparative user models for accelerating human-computer collaborative search, in (EvoMUSART, 2012), pp. 117–128
G.C. Johnson, Fitness in evolutionary art and music: what has been used and what could be used? in (EvoMUSART, 2012), pp. 129–140
Y. Li, C. Hu, Aesthetic learning in an interactive evolutionary art system, in EvoApplications (2), vol. 6025 (Springer, Berlin, 2010), pp. 301–310
A. Liapis, G. Yannakakis, J. Togelius, Adapting models of visual aesthetics for personalized content creation. IEEE Transactions on Computational Intelligence and AI in Games Special Issue on Computational Aesthetics in Games (to appear) (2012)
L. Liu, R. Chen, L. Wolf, D. Cohen-Or, Optimizing photo composition, in Computer Graphics Forum, vol. 29, ed. by T. Akenine-Moeller, M. Zwicker (Wiley Online Library, 2010), pp. 469–478
E. Lutton, Evolution of fractal shapes for artists and designers. Int. J. Artif. Intell. Tools 15(4), 651–672 (2006)
Article
Google Scholar
P. Machado, A. Cardoso, Computing aesthetics, in Proceedings of XIVth Brazilian Symposium on Artificial Intelligence (SBIA ’98) (Springer 1998), pp. 219–229
P. Machado, A. Cardoso, All the truth about NEvAr. Appl. Intell. 16(2), 101–118 (2002)
MATH
Article
Google Scholar
P. Machado, J. Romero, B. Manaris, Experiments in computational aesthetics. Art Artif. Evol. (2), 381–415 (2008)
K. Mainzer, Symmetry and Complexity: The Spirit and Beauty of Nonlinear Science, vol. 51 (World Scientific Publishing Company Incorporated, Singapore, 2005)
Google Scholar
B. Manaris, P. Roos, P. Machado, D. Krehbiel, L. Pellicoro, J. Romero, A corpus-based hybrid approach to music analysis and composition, in Proceedings of the National Conference on Artificial Intelligence, vol. 22 (Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007), p. 839
K. Matkovic, L. Neumann, T. Psik, W. Purgathofer, Global contrast factor—a new approach to image contrast, in Computational Aesthetics, ed. by L. Neumann, M. Sbert, B. Gooch, W. Purgathofer (Eurographics Association, Aire-la-Ville, 2005), pp. 159–167
T. Ojala, M. Pietikäinen, D. Harwood, A comparative study of texture measures with classification based on featured distributions. Pattern Recognit. 29(1), 51–59 (1996)
Article
Google Scholar
G. Papadopoulos, G. Wiggins, AI methods for algorithmic composition: a survey, a critical view and future prospects. in AISB Symposium on Musical Creativity (Edinburgh, UK, 1999), pp. 110–117
P.M. Todd, G.M. Werner, Frankensteinian approaches to evolutionary music composition. in Musical Networks: Parallel Distributed Perception and Performance, ed. by N. Griffith, P.M. Todd, (MIT Press, 1999), pp. 313–340. http://www-abc.mpibberlin.mpg.de/users/ptodd/publications/99evmus/99evmus.pdf. Accesed 27 Apr 2005
R. Poli, S. Cagnoni, Genetic programming with user-driven selection: experiments on the evolution of algorithms for image enhancement, in Genetic Programming 1997: Proceedings of the Second Annual Conference (Morgan Kaufmann, Stanford University, CA, USA, 1997), pp. 269–277
R. Quinlan, C4.5: Programs for Machine Learning. (Morgan Kaufmann Publishers, San Mateo, 1993)
Google Scholar
J. Rigau, M. Feixas, M. Sbert, Informational dialogue with Van Gogh’s paintings, in Computational Aesthetics, ed. by D.W. Cunningham, V. Interrante, P. Brown, J. McCormack (Eurographics Association, Aire-la-Ville, 2008), pp. 115–122
B.J. Ross, W. Ralph, H. Zong, Evolutionary image synthesis using a model of aesthetics, in Proceedings of the 2006 IEEE Congress on Evolutionary Computation ed. by G.G. Yen, L. Wang, P. Bonissone, S.M. Lucas (IEEE Press, Vancouver, 2006) pp. 3832–3839
Google Scholar
B.J. Ross, H. Zhu, Procedural texture evolution using multiobjective optimization. New Gener. Comput. 22(3), 271–293 (2004)
MATH
Article
Google Scholar
D. Rumelhart, G. Hintont, R. Williams, Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)
Article
Google Scholar
J. Secretan, N. Beato, D. D’Ambrosio, A. Rodriguez, A. Campbell, J. Folsom-Kovarik, K. Stanley, Picbreeder: A case study in collaborative evolutionary exploration of design space. Evol. Comput. 19(3), 373–403 (2011)
Article
Google Scholar
A. Serag, S. Ono, S. Nakayama, Using interactive evolutionary computation to generate creative building designs. Artif. Life Robot. 13(1), 246–250 (2008)
Article
Google Scholar
C. Shannon, Prediction and entropy of printed english. Bell Syst. Tech. J. 30, 50–64 (1951)
MATH
Google Scholar
K. Sims, Artificial Evolution for Computer Graphics, vol. 25. ACM (1991)
M. Stricker, M. Orengo, Similarity of color images, in Proceedings of SPIE Storage and Retrieval for Image and Video Databases, vol. 2420 (San Diego, CA, 1995), pp. 4
N. Svangard, P. Nordin, Automated aesthetic selection of evolutionary art by distance based classification of genomes and phenomes using the universal similarity metric, in Applications of Evolutionary Computing, EvoWorkshops 2004: (EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART, EvoSTOC 2004), pp. 447–456
H. Takagi, Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation. Proc. IEEE 89(9), 1275–1296 (2001). doi:10.1109/5.949485
Article
Google Scholar
H. Takagi, M. Ohsaki, Interactive evolutionary computation-based hearing aid fitting. Evol. Comput. IEEE Trans. 11(3), 414–427 (2007)
Article
Google Scholar
S. Wang, X. Wang, H. Takagi, User fatigue reduction by an absolute rating data-trained predictor in IEC, in Evolutionary Computation, 2006. CEC 2006. IEEE Congress on (2006), pp. 2195–2200
S. Wannarumon, L. J.Bohez, K. Annanon, Aesthetic evolutionary algorithm for fractal-based user-centered jewelry design. AI EDAM 22(1), 19–39 (2008)
Google Scholar