J. Bacardit, M. Stout, N. Krasnogor, J.D. Hirst, J. Blazewicz, Coordination number prediction using learning classifier systems, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), (Seattle, Washington, USA, 2006), p. 247. doi:10.1145/1143997.1144041
D.F. Barrero, M. R-Moreno, B. Castano, D. Camacho, An empirical study on the accuracy of computational effort in genetic programming, in Proceedings of the Congress on Evolutionary Computation (2011)
S. Christensen, F. Oppacher, An analysis of Koza’s computational effort statistic for genetic programming. In: Proceedings of EuroGP. (Springer, Berlin, 2002)
J.M. Daida, R. Bertram, S. Stanhope, J. Khoo, S. Chaudhary, O. Chaudhary, What makes a problem GP-Hard? Analysis of a tunably difficult problem in genetic programming. Genet. Program Evolvable Mach. 2, 165–191 (2001)
MATH
Article
Google Scholar
C. Drummond, N. Japkowicz, Warning: statistical benchmarking is addictive. Kicking the habit in machine learning. J. Exp. Theor. Artif. Intell. 22(1), 67–80 (2010)
MATH
Article
Google Scholar
E. Espié, C. Guionneau, B. Wymann, C. Dimitrakakis, R. Coulom, A. Sumner, TORCS—the open racing car simulator (2005)
R. Feldt, M. O’Neill, C. Ryan, P. Nordin, W.B. Langdon, GP-Beagle: a benchmarking problem repository for the genetic programming community, in Late Breaking Papers at GECCO (2000)
A. Fernández-Ares, A. Mora, J. Merelo, P. García-Sánchez, C. Fernandes, Optimizing player behavior in a real-time strategy game using evolutionary algorithms, in Proceedings of the Congress on Evolutionary Computation, pp. 2017–2024. IEEE (2011)
P. Flener, U. Schmid, An introduction to inductive programming. Artif. Intell. Rev. 29(1), 45–62 (2008)
Article
Google Scholar
A. Frank, A. Asuncion, UCI machine learning repository (2010). http://archive.ics.uci.edu/ml
J. Friedman, Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67 (1991)
Google Scholar
M. Gallagher, A. Ryan, Learning to play Pac-Man: an evolutionary, rule-based approach, in Proceedings of the Congress on Evolutionary Computation, vol. 4, pp. 2462–2469. IEEE (2003)
C. Gathercole, P. Ross, An adverse interaction between crossover and restricted tree depth in genetic programming, in: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (1996)
D.E. Goldberg, U.M. O’Reilly, Where does the good stuff go, and why? How contextual semantics influence program structure in simple genetic programming, in Proceedings of EuroGP (1998)
S. Gulwani, Dimensions in program synthesis, in Proceedings of the 12th International ACM SIGPLAN Symposium on Principles and Practice of Declarative Programming (ACM, Philadelphia, 2010) , pp. 13–24
S. Gustafson, E.K. Burke, N. Krasnogor, The tree-string problem: an artificial domain for structure and content search, in Proceedings of EuroGP (2005)
D.J. Hand, Classifier technology and the illusion of progress. Stat. Sci. 21(1), 1–14 (2006)
MathSciNet
MATH
Article
Google Scholar
M. Harman, B. Jones, Search-based software engineering. Inf. Softw. Technol. 43(14), 833–839 (2001)
Article
Google Scholar
R. Harper, Spatial co-evolution: quicker, fitter and less bloated, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (ACM, Philadelphia, 2012), pp. 759–766
K. Hartness, Robocode: using games to teach artificial intelligence. J. Comput. Sci. Coll. 19(4), 287–291 (2004)
Google Scholar
T.H. Hoang, N.X. Hoai, N.T. Hien, R.I. McKay, D. Essam, ORDERTREE: a new test problem for genetic programming, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (2006)
R.C. Holte, Very simple classification rules perform well on most commonly used datasets. Mach. Learn. 11, 63–90 (1993)
MATH
Article
Google Scholar
K. Imamura, J. Foster, A. Krings, The test vector problem and limitations to evolving digital circuits, in Proceedings of the Second NASA/DoD Workshop on Evolvable Hardware, pp. 75–79. IEEE (2000)
D. Johnson, in A theoretician’s guide to the experimental analysis of algorithms. Data structures, near neighbor searches, and methodology: fifth and sixth DIMACS implementation challenges, vol 59, pp. 215–250 (2002)
M. Keijzer, Improving symbolic regression with interval arithmetic and linear scaling, in Proceedings of EuroGP (2003)
E. Kirshenbaum, Iteration over vectors in genetic programming. HP Laboratories Technical Report HPL-2001-327 (2001)
M.F. Korns, Accuracy in symbolic regression, in Proceedings of Genetic Programming Theory and Practice (2011)
J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection. (MIT Press, Cambridge, MA, 1992)
MATH
Google Scholar
J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs. (MIT Press, Cambridge, MA, 1994)
MATH
Google Scholar
D. Loiacono, J. Togelius, Competitions@WCCI-2008: simulated car racing competition. ACM SIGEVOlution 2(4), 35–36 (2007)
Article
Google Scholar
S. Luke, L. Panait, Is the perfect the enemy of the good? in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (2002)
J. McDermott, D.R. White, S. Luke, L. Manzoni, M. Castelli, L. Vanneschi, W. Jaśkowski, K. Krawiec, R. Harper, K.D. Jong, U.M. O’Reilly, Genetic programming needs better benchmarks, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (ACM, Philadelphia, 2012)
Q.U. Nguyen, X.H. Nguyen, M. O’Neill, R.I. Mckay, E. Galván-López, Semantically-based crossover in genetic programming: application to real-valued symbolic regression. Genet. Program Evolvable Mach. 12, 91–119 (2011)
Article
Google Scholar
J. Niehaus, W. Banzhaf, More on computational effort statistics for genetic programming, in Proceedings of EuroGP (2003)
M. O’Neill, L. Vanneschi, S. Gustafson, W. Banzhaf, Open issues in genetic programming. Genet. Program Evolvable Mach. 11(3/4), 339–363 (2010)
Article
Google Scholar
L. Pagie, P. Hogeweg, Evolutionary consequences of coevolving targets. Evol. Comput. 5, 401–418 (1997)
Article
Google Scholar
N. Paterson, M. Livesey, Performance comparison in genetic programming, in Late Breaking Papers at GECCO (2000)
D. Perez, P. Rohlfshagen, S.M. Lucas, Monte-Carlo tree search for the physical travelling salesman problem, in Applications of Evolutionary Computation. Lecture Notes in Computer Science, vol. 7248, ed. by C. Di Chio, A. Agapitos, S. Cagnoni, C. Cotta, F.F. de Vega, G.A. Di Caro, R. Drechsler, A. Ekárt, A.I. Esparcia-Alcázar, M. Farooq, W.B. Langdon, J.J. Merelo-Guervós, M. Preuss, H. Richter, S. Silva, A. Simões, G. Squillero, E. Tarantino, A.G.B. Tettamanzi, J. Togelius, N. Urquhart, A.Ş. Uyar, G.N. Yannakakis (Springer, Berlin, Heidelberg, 2012), pp. 255–264
D. Phong, N. Hoai, R. McKay, C. Siriteanu, N. Uy, N. Park, Evolving the best known approximation to the q function. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (ACM, Philadelphia, 2012) , pp. 807–814
B. Punch, D. Zongker, E. Goodman, The royal tree problem, a benchmark for single and multiple population genetic programming. In: Advances in Genetic Programming 2, (MIT Press, Cambridge, MA, 1996), pp. 299–316
A. Strauss, J. Corbin (eds), Qualitative Research Practice: A Guide for Social Science Students and Researchers. (Sage, Beverley Hills, CA, 1997)
Google Scholar
S. Salzberg, On comparing classifiers: Pitfalls to avoid and a recommended approach. Data Min. Knowl. Disc. 1, 317–328 (1997)
Article
Google Scholar
B. Sendhoff, M. Roberts, X. Yao, Evolutionary computation benchmarking repository. IEEE Comput. Intell. Mag. 1(4), 50–60 (2006)
Google Scholar
J.C. Sprott, Simplest dissipative chaotic flow. Phys. Lett. A 228(4), 271–274 (1997)
MathSciNet
MATH
Article
Google Scholar
A. Strauss, J. Corbin, Grounded Theory in Practice. (Sage, Beverley Hills, CA, 1997)
Google Scholar
M. Streeter, L.A. Becker, Automated discovery of numerical approximation formulae via genetic programming. Genet. Program. Evol. Mach. 4, 255–286 (2003). doi:10.1023/A:1025176407779
J. Togelius, S. Karakovskiy, R. Baumgarten, The 2009 mario ai competition, in Proceedings of the Congress on Evolutionary Computation (2010)
M. Tomassini, L. Vanneschi, P. Collard, M. Clergue, A study of fitness distance correlation as a difficulty measure in genetic programming. Evol. Comput. 13, 213–239 (2005). doi:10.1162/1063656054088549
Google Scholar
L. Vanneschi, M. Castelli, L. Manzoni, The K landscapes: a tunably difficult benchmark for genetic programming, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) (2011)
E. Vladislavleva, G. Smits, D. Den Hertog, Order of nonlinearity as a complexity measure for models generated by symbolic regression via pareto genetic programming. IEEE Trans. Evol. Comput. 13(2), 333–349 (2009)
K.L. Wagstaff, Machine learning that matters, in Proceedings of the 29th International Conference on Machine Learning (ICML-12), ed. by J. Langford, J. Pineau (2012)
J. Walker, J. Miller, Predicting prime numbers using Cartesian genetic programming. Proceedings of EuroGP pp. 205–216 (2007)
J. Walker, J. Miller, The automatic acquisition, evolution and reuse of modules in Cartesian genetic programming. IEEE Trans. Evol. Comput. 12(4), 397–417 (2008)
Article
Google Scholar
H. Warren, Hacker’s Delight. (Addison-Wesley Professional, 2003). http://hackersdelight.org/
W. Weimer, T. Nguyen, C. Le Goues, S. Forrest, Automatically finding patches using genetic programming, in Proceedings of the 31st International Conference on Software Engineering (2009)
P. Widera, J. Garibaldi, N. Krasnogor, GP challenge: evolving energy function for protein structure prediction. Genet. Program Evolvable Mach. 11, 61–88 (2010)
Article
Google Scholar
J.L. Wilkerson, D.R. Tauritz, J. Bridges, Multi-objective coevolutionary automated software correction system, in Proceedings of the Genetic and Evolutionary Computation Conference (GECCO). (ACM, Philadelphia, 2012)
L. Wilkinson, A. Anand, D. Tuan, CHIRP: a new classifier based on composite hypercubes on iterated random projections. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD), vol. 11, (2011), pp. 6–14