S.G. Akl, M.M. Newborn, The principal continuation and the killer heuristic. in Proceedings of the 5th Annual ACM Computer Science Conference (ACM Press, Seattle, WA, 1977), pp. 466–473
P. Aksenov, Genetic Algorithms for Optimising Chess Position Scoring. Master’s Thesis, University of Joensuu, Finland (2004)
T.S. Anantharaman, Extension heuristics. ICCA J. 14(2), 47–65 (1991)
MathSciNet
Google Scholar
J. Baxter, A. Tridgell, L. Weaver, Learning to play chess using temporal-differences. Mach. Learn. 40(3), 243–263 (2000)
MATH
Article
Google Scholar
D.F. Beal, Experiments with the null move. Advances in Computer Chess 5, in ed. by D.F. Beal (Elsevier Science, Amsterdam, 1989), pp. 65–79
D.F. Beal, M.C. Smith, Quantification of search extension benefits. ICCA J. 18(4), 205–218 (1995)
Google Scholar
Y. Björnsson, T.A. Marsland, Multi-cut pruning in alpha-beta search. in Proceedings of the First International Conference on Computers and Games, Tsukuba, Japan (1998), pp. 15–24
Y. Björnsson, T.A. Marsland, Multi-cut alpha-beta-pruning in game-tree search. Theor. Comput. Sci. 252(1–2), 177–196 (2001)
MATH
Article
Google Scholar
M. Block, M. Bader, E. Tapia, M. Ramirez, K. Gunnarsson, E. Cuevas, D. Zaldivar, R. Rojas, Using reinforcement learning in chess engines, Res. Comput. Sci. 35, 31–40 (2008)
Google Scholar
M.S. Campbell, T.A. Marsland, A comparison of minimax tree search algorithms. Artif. Intell. 20(4), 347–367 (1983)
MATH
Article
Google Scholar
S. Chinchalkar, An upper bound for the number of reachable positions. ICCA J. 19(3), 181–183 (1996)
Google Scholar
O. David-Tabibi, A. Felner, N.S. Netanyahu, Blockage detection in pawn endings. in Proceedings of the 2004 International Conference on Computers and Games, eds. by H.J. van den Herik, Y. Björnsson, N.S. Netanyahu (Springer (LNCS 3846), Ramat-Gan, Israel, 2006), pp. 187–201
O. David-Tabibi, M. Koppel, N.S. Netanyahu, Genetic algorithms for mentor-assisted evaluation function optimization. in Proceedings of the Genetic and Evolutionary Computation Conference (Atlanta, GA, 2008), pp. 1469–1476
O. David-Tabibi, N.S. Netanyahu, Extended null-move reductions. in Proceedings of the 2008 International Conference on Computers and Games, eds. by H.J. van den Herik, X. Xu, Z. Ma, M.H.M. Winands (Springer (LNCS 5131), Beijing, China, 2008), pp. 205–216
C. Donninger, Null move and deep search: Selective search heuristics for obtuse chess programs. ICCA J. 16(3), 137–143 (1993)
Google Scholar
J.J. Gillogly, The technology chess program. Artif. Intell. 3(1–3), 145–163 (1972)
MATH
Article
Google Scholar
R. Gross, K. Albrecht, W. Kantschik, W. Banzhaf, Evolving chess playing programs. in Proceedings of the Genetic and Evolutionary Computation Conference (New York, NY, 2002), pp. 740–747
A. Hauptman, M. Sipper, Using genetic programming to evolve chess endgame players. in Proceedings of the 2005 European Conference on Genetic Programming (Springer, Lausanne, Switzerland, 2005), pp. 120–131
A. Hauptman, M. Sipper, Evolution of an efficient search algorithm for the Mate-in-N problem in chess. in Proceedings of the 2007 European Conference on Genetic Programming (Springer, Valencia, Spain, 2007), pp. 78–89
E.A. Heinz, Extended futility pruning. ICCA J. 21(2), 75–83 (1998)
MathSciNet
Google Scholar
R.M. Hyatt, A.E. Gower, H.L. Nelson. Cray Blitz. Computers, chess, and cognition, in eds. T.A. Marsland, J. Schaeffer (Springer, New York, 1990), pp. 227–237
Google Scholar
G. Kendall, G. Whitwell, An evolutionary approach for the tuning of a chess evaluation function using population dynamics. in Proceedings of the 2001 Congress on Evolutionary Computation. (IEEE Press, World Trade Center, Seoul, Korea, 2001), pp. 995–1002
J. McCarthy, Chess as the Drosophila of AI. Computers, chess, and cognition, eds. T.A. Marsland, J. Schaeffer (Springer, New York, 1990), pp. 227–237
Google Scholar
H.L. Nelson. Hash tables in Cray Blitz. ICCA J. 8(1), 3–13 (1985)
Google Scholar
A. Reinfeld, An improvement to the Scout tree-search algorithm. ICCA J. 6(4), 4–14 (1983)
Google Scholar
J. Schaeffer, The history heuristic. ICCA J. 6(3), 16–19 (1983)
Google Scholar
J. Schaeffer, The history heuristic and alpha-beta search enhancements in practice. IEEE Trans. Pattern. Anal. Mach. Intell. 11(11), 1203–1212 (1989)
Article
Google Scholar
J. Schaeffer, M. Hlynka, V. Jussila, Temporal difference learning applied to a high-performance game-playing program. in Proceedings of the 2001 International Joint Conference on Artificial Intelligence (Seattle, WA, 2001), pp. 529–534
J.J. Scott. A chess-playing program, in machine intelligence 4, eds. B. Meltzer, D. Michie (Edinburgh University Press, Edinburgh, 1969), pp. 255–265
Google Scholar
D.J. Slate, L.R. Atkin, Chess 4.5—The Northwestern University chess program. Chess skill in man and machine, ed. by P.W. Frey (Springer, New York, 2nd ed, 1983), pp. 82–118
R.S. Sutton, A.G. Barto. Reinforcement learning: an introduction (MIT Press, Cambridge, MA, 1998)
Google Scholar
G. Tesauro, Practical issues in temporal difference learning. Mach. Learn. 8(3–4), 257–277 (1992)
MATH
Google Scholar
W. Tunstall-Pedoe (1991) Genetic algorithms optimising evaluation functions. ICCA J. 14(3), 119–128 (1991)
Google Scholar
M.A. Wiering, TD Learning of Game Evaluation Functions with Hierarchical Neural Architectures. Master’s Thesis, University of Amsterdam (1995)