Skip to main content

A genetic algorithm for discrete tomography reconstruction

Abstract

The aim of this paper is the description of an experiment carried out to verify the robustness of two different approaches for the reconstruction of convex polyominoes in discrete tomography. This is a new field of research, because it differs from classic computerized tomography, and several problems are still open. In particular, the stability problem is tackled by using both a modified version of a known algorithm and a new genetic approach. The effect of both, instrumental and quantization noises has been considered too.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1988)

    MATH  Google Scholar 

  2. 2.

    A. Kuba, G.T. Herman, Discrete tomography: a historical overview, in Discrete Tomography: Foundations, Algorithms and Applications, ed. by A. Kuba, G.T. Herman (Birkhauser, Boston, 1999), pp. 3–4

  3. 3.

    J.A. Browne, M. Koshy, CT-assisted engineering and manufacturing, in Discrete Tomography: Foundations, Algorithms and Applications, ed. by A. Kuba, G.T. Herman (Birkhauser, Boston 1999), pp. 345–361

  4. 4.

    H.J. Ryser, Combinatorial properties of matrices of zeros and ones. Can. J. Math. 9, 371–377 (1957)

    MATH  MathSciNet  Google Scholar 

  5. 5.

    D. Gale, A theorem on flows in networks. Pacific J. Math. 7, 1073–1082 (1957)

    MATH  MathSciNet  Google Scholar 

  6. 6.

    S.K. Chang, The reconstruction of binary patterns from their projections. Commun. ACM 14, 21–25 (1971)

    MATH  Article  Google Scholar 

  7. 7.

    A. Del Lungo, M. Nivat, R. Pinzani, The number of convex polyominoes reconstructible from their orthogonal projections. Discrete Math. 157, 65–78 (1996)

    MATH  Article  MathSciNet  Google Scholar 

  8. 8.

    I. Svalbe, D. van der Spek, Reconstruction of tomographic images using analog projections and the digital Radon transform. Linear Algebra Appl. 339, 125–145 (2001)

    MATH  Article  MathSciNet  Google Scholar 

  9. 9.

    A. Alpers, P. Gritzmann, L. Thorens, Stability and instability in discrete tomography, in Digital and Image Geometry. Lecture Notes in Computer Science, vol. 2243 (Springer-Verlag, 2001), pp. 175–186

  10. 10.

    E. Balogh, A. Kuba, C. Dévényi, A. Del Lungo, Comparison of algorithms for reconstructing hv-convex discrete sets. Linear Algebra Appl. 339, 23–35 (2001)

    MATH  Article  MathSciNet  Google Scholar 

  11. 11.

    E. Barcucci, A. Del Lungo, M. Nivat, R. Pinzani, X-rays characterizing some classes of discrete sets. Linear Algebra Appl. 339, 3–21 (2001)

    MATH  Article  MathSciNet  Google Scholar 

  12. 12.

    E. Barcucci, A. Del Lungo, M. Nivat, R. Pinzani, Medians of polyominoes: a property for the reconstruction. Int. J. Imaging Syst. Technol. 9, 69–77 (1998)

    Article  Google Scholar 

  13. 13.

    S. Brunetti, A. Del Lungo, F. Del Ristoro, A. Kuba, M. Nivat, Reconstruction of 8- and 4-connected convex discrete sets from row and column projections. Linear Algebra Appl. 339, 37–57 (2001)

    MATH  Article  MathSciNet  Google Scholar 

  14. 14.

    A. Del Lungo, M. Nivat, Reconstruction of connected sets from two projections, in Discrete Tomography: Foundations, Algorithms and Applications, ed. by A. Kuba, G.T. Herman (Birkhauser, 1999), pp. 163–188

  15. 15.

    M. Chrobak, C. Dürr, Reconstructing hv-convex polyominoes from orthogonal projections. Inform. Process. Lett. 69, 283–289 (1999)

    MATH  Article  MathSciNet  Google Scholar 

  16. 16.

    A. Kuba, Reconstruction in Different Classes of 2D Discrete Sets. Lecture Notes in Computer Science, vol. 1568 (1999), pp. 153–163

  17. 17.

    V. Di Gesù, C. Valenti, The stability problem and noisy projections in discrete tomography. J. Vis. Lang. Comput. 15(5), 361–371 (2004)

    Article  Google Scholar 

  18. 18.

    R.J. Gardner, P. Gritzmann, Discrete tomography: determination of finite sets by X-rays. Trans. Amer. Math. Soc. 349, 2271–2295 (1997)

    MATH  Article  MathSciNet  Google Scholar 

  19. 19.

    M. Venere, H. Liao, A. Clausse, A genetic algorithm for adaptive tomography of elliptical objects. IEEE Signal Process. Lett. 7(7), 176–178 (2000)

    Article  Google Scholar 

  20. 20.

    K.D. Kihm, D.P. Lyons, Optical tomography using a genetic algorithm. Opt. Lett. 21(17), 1327–1329 (1996)

    Article  Google Scholar 

  21. 21.

    K.D. Kihm, D.P. Lyons, Tomographic-image reconstruction using a hybrid genetic algorithm. Opt. Lett. 22(12), 847–849 (1997)

    Google Scholar 

  22. 22.

    K.J. Batenburg, An evolutionary algorithm for discrete tomography. Discrete Appl. Math. 151, 36–54 (2005)

    MATH  Article  MathSciNet  Google Scholar 

  23. 23.

    D.T. Pham, D. Karaboga, Intelligent Optimisation Techniques (Springer, 2000)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cesare Valenti.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Valenti, C. A genetic algorithm for discrete tomography reconstruction. Genet Program Evolvable Mach 9, 85–96 (2008). https://doi.org/10.1007/s10710-007-9051-9

Download citation

Keywords

  • Discrete tomography
  • Stability problem
  • Genetic algorithm