Skip to main content
Log in

The genotype–phenotype distinction: from Mendelian genetics to 21st century biology

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

It is a well-established fact that language is not only our servant, when we wish to express–or even to conceal–our thoughts, but that it may also be our master, overpowering us by means of the notions attached to the current words. This fact is the reason why it is desirable to create a new terminology in all cases where new or revised conceptions are being developed. Old terms are mostly compromised by their application in antiquated or erroneous theories and systems, from which they carry splinters of inadequate ideas, not always harmless to the developing insight. (Johannsen, 1911, p. 132)

Abstract

The Genotype-Phenotype (G-P) distinction was proposed in the context of Mendelian genetics, in the wake of late nineteenth century studies about heredity. In this paper, we provide a conceptual analysis that highlights that the G-P distinction was grounded on three pillars: observability, transmissibility, and causality. Originally, the genotype is the non-observable and transmissible cause of its observable and non-transmissible effect, the phenotype. We argue that the current developments of biology have called the validity of such pillars into question. First, molecular biology has unveiled the putative material substrate of the genotype (qua DNA), making it an observable object. Second, numerous findings on non-genetic heredity suggest that some phenotypic traits can be directly transmitted. Third, recent organicist approaches to biological phenomena have emphasized the reciprocal causality between parts of a biological system, which notably applies to the relation between genotypes and phenotypes. As a consequence, we submit that the G-P distinction has lost its general validity, although it can still apply to specific situations. This calls for forging new frameworks and concepts to better describe heredity and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not Applicable.

Code availability

Not Applicable.

Notes

  1. Two conceptions of heredity can be distinguished in the nineteenth century: a phenomenal (statistical) one, according to which heredity is merely a measurable resemblance, and a physiological one, which interprets heredity as a process of material transmission (Gayon 1992; 2000). The phenomenal approach only measures resemblances between parents and offspring without any consideration for underlying processes. In this paper, we leave it aside.

  2. This differential view of the genotype–phenotype causal relationship was recently reaffirmed (Orgogozo et al. 2015), notably to prevent naïve interpretations according to which genes alone would be the causes of traits.

  3. The effects of interactions — of genes with other genes (epistasis) and of genes with the environment (norms of reactions) — also increased the complexity of the G-P relations, insofar as they imply a many-to-many relation between the genotype and the phenotype (see Orgogozo et al. 2015; De Vienne, this issue).

  4. Trans-generationally inherited epigenetic marks are sometimes referred to as “epigenotypes” (e.g. Hofmeister et al. 2017). We note a similar trajectory of this concept with that of the genotype. Waddington originally coined the term “epigenotype” to mean something rather abstract: “the set of organizers [i.e. genes] and organizing relations” (Waddington 1939 [2016]) or, in a slightly different sense, the complex of developmental processes that link the genotype and phenotype (Waddington 1942; see Boisseau, in press). The epigenotype came to be interpreted in a molecular way following the development of molecular biology. (Haig 2012).

  5. Strictly speaking, originally the phenotype is a relational notion that supposes a corresponding genotype (Gayon and Petit 2018, p. 326). From this point of view, talking about the transmission of phenotypes is improper, and presupposes an inflexion of the original Mendelian meaning. A more Mendelian notion is that of “posthumous phenotypes” (Lehmann 2008; see Pocheville 2010), that is, phenotypes that extend beyond the generation time.

  6. Note that conditions of existence concern a different level of explanation than causation. Conditions of existence explain the possibility of existence of a given system, while causation explains how differences make differences on some predicates (Bernard 1865; Woodward 2003; Pearl 2009; see also Stewart 2004). Thus, the reciprocal determination of conditions of existence does not per se invalidate any putative G-P causal asymmetry.

  7. Mutational assimilation, which refers to the fact that phenotypes can induce a specific kind of variation in the genotype (qua DNA sequence) at the level of the individual, is different from genetic assimilation (sensu Waddington), which occurs at the level of the population (Pigliucci et al. 2006).

  8. As a reviewer noticed, a different strategy would be to take a step back from a causal theory of inheritance and espouse statistical concepts such as those of heritable and non-heritable variation, as dissected by ANOVA in quantitative genetics (e.g. Danchin and Wagner 2010). Although not unrelated to underlying causal theories of inheritance, such statistical concepts do not map straightforwardly to causal concepts (as genotype and phenotype are), and a proper discussion of such intricacies would deserve a paper of its own. We note that the extreme sensitivity of ANOVA to frequency distributions of variables brings such a statistical approach closer to a description of contingent situations than to a theory of biological variation (Lewontin 1974).

References

  • Alberch P (1991) From genes to phenotype: dynamical systems and evolvability. Genetica 84:5–11

    Article  CAS  PubMed  Google Scholar 

  • Avery OT, MacLeod CM, McCarty M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J Exp Med 79(2):137–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avital E, Jablonka E (2000) Animal traditions: behavioural inheritance in evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bateson W (1902) Mendel’s principles of heredity. A defence. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bernard C (1865) Introduction à l’Étude de la Médecine Expérimentale. Baillière, Paris

    Google Scholar 

  • Bertalanffy LV (1952) Problems of life an evaluation of modern biological and scientific thought. Harper & Brothers, New York

    Google Scholar 

  • Boisseau A (In press) La Causalité Du Développement Selon C. H. Waddington

  • Bonduriansky R (2012) Rethinking heredity, again. Trends Ecol Evol 27(6):330–336

    Article  CAS  PubMed  Google Scholar 

  • Bonduriansky R, Day T (2018) Extended heredity: a new understanding of inheritance and evolution. Princeton University Press, Princeton

    Book  Google Scholar 

  • Boveri T (1904) Ergebnisse Über Die Konstitution Der Chromatischen Substanz Des Zellkerns. Jena: G. Fischer

  • Bowler P (2001) The Mendelian revolution: the emergence of hereditarian concepts in modern science and society. Continuum International Publishing Group

  • Braun E (2015) The unforeseen challenge: from genotype-to-phenotype in cell populations. Rep Prog Phys 78(3):1–51

    Article  CAS  Google Scholar 

  • Champagne F (2008) Epigenetic mechanisms and the transgenerational effects of maternal care. Front Neuroendocrinol 29(3):386–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cornish-Bowden A, Cárdenas ML (2020) Contrasting theories of life: historical context, current theories. In search of an ideal theory. Biosystems 1:104063

    Article  Google Scholar 

  • Crick FH (1958) On protein synthesis. In: Sanders FK (Ed) Symposia of the Society for Experimental Biology, Number XII: The Biological Replication of Macromolecules. Cambridge University Press, Cambridge. pp 138–163

  • Danchin E et al (2019) Epigenetically facilitated mutational assimilation: epigenetics as a hub within the inclusive evolutionary synthesis. Biol Rev 94(259–282):259. https://doi.org/10.1111/brv.12453

    Article  Google Scholar 

  • Darwin C (1859) On the Origin of Species by Means of Natural Selection. The variation of animals and plants under domestication. John Murray, London

    Google Scholar 

  • Darwin C (1868) The variation of animals and plants under domestication, vol 2. John Murray, London

    Google Scholar 

  • Darwin C (1871) The descent of man, and selection in relation to sex. 1st ed. Vol. 1–2. John Murray, London

  • De Vienne D (this issue) What is a phenotype? History and news of the concept. Genetica

  • De Vries H (1889) [1910] Intracellular pangenesis. Open Court Publishing Co., Chicago

  • Danchin E, Pocheville A, Rey O, Pujol B, Blanchet S (2011) Epigenetically facilitated mutational assimilation: epigenetics as a hub within the inclusive evolutionary synthesis. Biol Rev 94:259–282

    Article  Google Scholar 

  • Danchin E, Pocheville A (2014) Inheritance is where physiology meets evolution. J Physiol 592(11):2307–2317. https://doi.org/10.1113/jphysiol.2014.272096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danchin É, Wagner RH (2010) Inclusive heritability: combining genetic and non-genetic information to study animal behavior and culture. Oikos 119(2):210–218

    Article  Google Scholar 

  • Dawkins R (2006) The selfish gene, 3rd edn. Oxford University Press, Oxford

    Google Scholar 

  • Dobzhansky T (1937) Genetics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Falk R (1984) The gene in search of an identity. Hum Genet 68(3):195–204. https://doi.org/10.1007/BF00418388

  • Franklin RE, Gosling RG (1953) Molecular configuration in sodium thymonucleate. Nature 171(4356):740–741. https://doi.org/10.1038/171740a0

    Article  CAS  PubMed  Google Scholar 

  • Friedberg EC, Walker GC, Siede W, Wood RD (Eds.) (2005) DNA repair and mutagenesis. American Society for Microbiology Press.

  • Forterre P, Filee J, Myllykallio H (2004) Origin and evolution of DNA and DNA replication machineries. In: Ribas de Pouplana L (Ed.) The genetic code and the origin of life. Landes Bioscience pp 145–168

  • Fox Keller E (1983 [2003]) A Feeling for the Organism, 10th Anniversary Edition: The Life and Work of Barbara McClintock. Macmillan

  • Fox Keller E (2000) The century of the gene. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Galef BG Jr, Laland KN (2005) Social learning in animals: empirical studies and theoretical models. Bioscience 55(6):489–499

  • Galton F (1865) Hereditary talent and character. Macmillan’s Magazine 12:157–166

    Google Scholar 

  • Galton F (1872) On blood-relationship. Proc Royal Soc Lond 20:394–402

  • Galton F (1876) A theory of heredity. J Anthropol Inst G B Irel 5:329–348

    Google Scholar 

  • Galton F (1887) On blood-relationship. Proc R Soc Lond 20:394–402

    Google Scholar 

  • Galton F (1886) Regression towards mediocrity in hereditary stature. J Anthropol Inst G B Irel 15:246–263

    Google Scholar 

  • Gayon J (1992) Darwin et l’après-Darwin : une histoire de l’hypothèse de sélection dans la théorie de l’évolution. Kimé, Paris

    Google Scholar 

  • Gayon J (2004) La génétique est-elle encore une discipline ? Médecine/sciences 20(2):248–253

    Article  Google Scholar 

  • Gayon J (2000) From Measurement to Organization : a Philosophical Scheme for the History of the Concept of Heredity. In: Beurton P, Falk R, Rheinberger H-J (eds) The concept of the gene in development and evolution : historical and epistemological perspectives. Cambridge University Press, Cambridge, pp 69–90

    Chapter  Google Scholar 

  • Gayon J, Petit V (2018) La connaissance de la vie aujourd’hui. ISTE Editions

  • Gilbert SF (2003) Developmental Biology, 7th edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • Gilbert SF, Sarkar S (2000) Embracing complexity: organism for the 21st century. Dev Dyn 219(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Gilbert S, Sapp J, Tauber A (2012) A symbiotic view of life: we have never been individuals. Q Rev Biol 87:325–341

    Article  PubMed  Google Scholar 

  • Griesemer J (2000) Development, culture, and the units of inheritance. Philosophy of Science 67:S348–S368

    Article  Google Scholar 

  • Griffiths PE, Stotz K (2013) Genetics and philosophy: an introduction. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Haig D (2012) Commentary: the epidemiology of epigenetics. Int J Epidemiol 41(1):13–16

    Article  PubMed  Google Scholar 

  • Heams T (2014) Randomness in Biology. Math Struct Comput Sci 24(3). https://doi.org/10.1017/S096012951200076X

  • Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance : myths and mechanisms. Cell 157(1):95–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmeister BT, Lee K, Rohr NA, Hall DW, Schmitz RJ (2017) Stable inheritance of DNA methylation allows creation of epigenotype maps and the study of epiallele inheritance patterns in the absence of genetic variation. Genome Biol 18(1):155. https://doi.org/10.1186/s13059-017-1288-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hull D (1988) Interactors versus vehicles. In: Plotkin HC (ed) The role of behavior in evolution. MIT Press, Cambridge, MA, pp 19–50

    Google Scholar 

  • Jablonka E, Lamb M (1995) Epigenetic inheritance and evolution: the Lamarckian dimension. Oxford University Press, Oxford

    Google Scholar 

  • Jablonka E, Lamb M (2005) Evolution in four dimensions: genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press, Cambridge

    Google Scholar 

  • Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Quart Rev Biol 84(2):131–176

  • Jacob F (1970) La logique du vivant, une histoire de l’hérédité. Gallimard, Paris

    Google Scholar 

  • Jacob F, Monod J (1961) Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol 3:318–356

    Article  CAS  PubMed  Google Scholar 

  • Jaeger J, Monk N (2014) Bioattractors: dynamical systems theory and the evolution of regulatory processes. J Physiol 592(11):2267–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johannsen WL (1909) Elemente der Exakten Erblichkeitslehre. Jena: Gustav Fischer, 170

  • Johannsen WL (1911) The genotype conception of heredity. Am Nat 45(531):129–159

    Article  Google Scholar 

  • Joly D, Grunau C (eds) (2018) Prospective Épigénétique, Écologie & Évolution. Une Prospective de l’Institut Ecologie et Environnement, 8, CNRS

  • Kant I (1790/1987) Critique of Judgment. Hackett Publishing, Indianapolis

  • Kauffman S (2000) Investigations. Oxford University Press, Oxford

    Google Scholar 

  • Kitano H (2002) Computational systems biology. Nature 420:206–210

    Article  CAS  PubMed  Google Scholar 

  • Kuhn TS (1970) The structure of scientific revolutions. University of Chicago Press, Chicago

    Google Scholar 

  • Kupiec JJ, Sonigo P (2000) Ni Dieu ni gène. Pour une autre théorie de l’hérédité. Seuil, Paris

  • Laland KN, Odling-Smee JF, Myles S (2010) How culture shaped the human genome: bringing genetics and the human sciences together. Nat Rev Genet 11(2):137–148

    Article  CAS  PubMed  Google Scholar 

  • Lamarck J-B de (1809) Philosophie zoologique ou exposition des considérations relatives à l’histoire naturelle des animaux. Vol. Tome premier. 2 vols. Dentu, Paris

  • Lamm E, Jablonka E (2008) The nurture of nature : hereditary plasticity in evolution. Philos Psychol 21(3):305–319

    Article  Google Scholar 

  • Lehmann L (2008) The adaptive dynamics of niche constructing traits in spatially subdivided populations: evolving posthumous extended phenotypes. Evolution 62(3):549–566

    Article  PubMed  Google Scholar 

  • Lenay C (1990) La découverte des lois de l’hérédité (1862–1900), une anthologie. Presses Pocket, Paris

    Google Scholar 

  • Lewontin RC (1974) The analysis of variance and the analysis of causes. Am J Hum Genet 26:400–411. https://doi.org/10.1093/ije/dyl062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewontin RC (1992) Genotype and phenotype. Keywords in evolutionary biology, 4th edn. Harvard University Press, Harvard, pp 137–144

    Google Scholar 

  • Longo G, Miquel PA, Sonnenschein C, Soto A (2012) Is Information a proper observable for biological organization? Prog Biophys Mol Biol 109(3):108–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Beltrán C (1994) Forging heredity: from metaphor to cause, a reification story. Studies in History and Philosophy of Science Part a 25(2):221–235

    Article  Google Scholar 

  • Mahar B (2008) The case of the missing heritability. Nature 456(7218):18–21

    Article  CAS  Google Scholar 

  • Maher B (2008) Personal genomes : the case of the missing heritability. Nature 456(7218):18–21

    Article  CAS  PubMed  Google Scholar 

  • Maturana H, Varela F (1980) Autopoiesis and cognition: the realization of the living. Reidel, Boston

    Book  Google Scholar 

  • Maynard SJ (1958) The theory of evolution, 3rd edition (1993). Cambridge University Press, Cambridge

  • Mayr E (1961) Cause and effect in biology. Science 134:1501–1506

    Article  CAS  PubMed  Google Scholar 

  • Mayr E (1998) Prologue: some thoughts on the history of the evolutionary synthesis

  • Mayr E, Provine WB (Eds) The Evolutionary Synthesis : Perspectives on the Unification of Biology. Harvard University Press, Cambridge. pp 1–48

  • Mendel G (1901) Experiments in Plant Hybridization (1865) In Read at the February 8th, and March 8th, 1865, Meetings of the Brünn Natural History Society, translated by William Bateson. http://www.esp.org/foundations/genetics/classical/gm-65-a.pdf. (Mendel, Gregor. 1866. Versuche über Plflanzenhybriden. Verhand- lungen des naturforschenden Vereines in Brünn, Bd. IV für das Jahr 1865, Abhandlungen, 3–47.)

  • Merlin F (2010) Evolutionary chance mutation: a defense of the modern synthesis’ consensus view. Philos Theory Biol 2(201306):1–22

    Google Scholar 

  • Merlin F, Riboli-Sasco L (2017) Mapping biological transmission: an empirical, dynamical, and evolutionary approach. Acta Biotheor 65(2):97–115

    Article  PubMed  Google Scholar 

  • Montévil M, Mossio M (2015) Biological organisation as closure of constraints. J Theor Biol 372:179–191

    Article  PubMed  Google Scholar 

  • Montévil M, Mossio M, Pocheville A, Longo G (2016) Theoretical principles for biology: variation. Prog Biophys Mol Biol 122(1):36–50

  • Morange M (2003) Histoire de la biologie moléculaire. La Découverte, Paris

    Book  Google Scholar 

  • Moreno A, Mossio M (2015) Biological autonomy. A philosophical and theoretical enquiry. Springer, Dordrecht

    Google Scholar 

  • Mossio M, Montévil M, Longo G (2016) Theoretical principles for biology: organisation. Prog Biophys Mol Biol 122(1):24–35

    Article  PubMed  Google Scholar 

  • Mossio M, Pontarotti G (2019) Conserving functions across generations: heredity in the light of biological organisation. Br J Philos Sci. https://doi.org/10.1093/bjps/axz031

    Article  Google Scholar 

  • Muller HJ (1922) Variation due to change in the individual gene. Am Nat 56(642):32–50

    Article  Google Scholar 

  • Müller-Wille S, Rheinberger H-J (2007) Heredity – The Formation of an Epistemic Space. In: Müller-Wille S, Rheinberger H-J (eds) Heredity produced: at the crossroads of biology, politics, and culture, 1500–1870. MIT Press, Cambridge, pp 3–34

    Chapter  Google Scholar 

  • Noble D (2008) Claude Bernard, the first systems biologist, and the future of physiology. Exp Physiol 93(1):16–26

    Article  PubMed  Google Scholar 

  • Odling-Smee J (2010) Niche inheritance. In: Pigliucci M, Müller GB (eds) Evolution – the extended synthesis. MIT Press, Cambridge, pp 175–208

    Chapter  Google Scholar 

  • Orgogozo V, Morizot B, Martin A (2015) The differential view of genotype-phenotype relationships. Front Genet 19(6):179. https://doi.org/10.3389/fgene.2015.00179

    Article  CAS  Google Scholar 

  • Oyama S (1985) The ontogeny of information: developmental systems and evolution. Duke University Press, New York

    Google Scholar 

  • Nature Reviews (2021) DNA damage repair Series. www.nature.com/collections/hwnqqcstyj/

  • Pearl J (2009) Causality: models, reasoning, and inference, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  • Peter T, Lewontin R (2021) The Genotype/Phenotype Distinction, The Stanford Encyclopedia of Philosophy (Summer 2021 Edition), Zalta EN (ed.) https://plato.stanford.edu/archives/sum2021/entries/genotype-phenotype/

  • Piaget J (1967) Biologie et Connaissance. Gallimard, Paris

    Google Scholar 

  • Pigliucci M (2010) Genotype-phenotype mapping and the end of the ‘genes as blueprint’ metaphor. Philos Trans R Soc Lond B Biol Sci 365(1540):557–566. https://doi.org/10.1098/rstb.2009.0241 PMID: 20083632; PMCID: PMC2817137

  • Pigliucci M, Murren CJ, Schlichting CD (2006) Phenotypic plasticity and evolution by genetic assimilation. J Exp Biol 209(12):2362–2367

    Article  PubMed  Google Scholar 

  • Pocheville A (2010) What Niche Construction Is (Not). In : La Niche Écologique: Concepts, Modèles, Applications. (Doctoral dissertation), by Arnaud Pocheville, pp 39–124. Ecole Normale Supérieure Paris, Paris

  • Pocheville A (2018) Biological Information as Choice and Construction. Edited by Wendy Parker. Philosophy of Science, Proceedings of the 2016 Biennial Meeting of the Philosophy of Science Association, 85 (5).

  • Pocheville A (2019) A Darwinian dream: on time, levels, and processes in evolution. In: Uller T, Laland KN (eds) Evolutionary causation. Biological and philosophical reflections, Vienna series in Theoretical Biology. MIT Press, Boston

    Google Scholar 

  • Pocheville A, Danchin E (2017) Genetic Assimilation and the Paradox of Blind Variation. In: Walsh DM, Huneman P (eds) Challenging the Modern Synthesis. Oxford University Press, Oxford

    Google Scholar 

  • Pontarotti G (2016) Extended inheritance as reconstruction of extended organization: the paradigmatic case of symbiosis. Lato Sensu 3(1):93–102

    Article  Google Scholar 

  • Pontarotti G (2015) Extended inheritance from an organizational point of view. Hist Philos Life Sci 37:430–448

    Article  PubMed  Google Scholar 

  • Portin P (1993) The concept of the gene: short history and present status. Q R Biol 68:173–223

    Article  CAS  Google Scholar 

  • Pichot A (1993) Histoire de la notion de vie. Gallimard, Paris

    Google Scholar 

  • Pray L (2008) DNA replication and causes of mutation. Nature Education 1(1):214

    Google Scholar 

  • Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135(2):216–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Richards C, Bossdorf O, Pigliucci M (2010) What role does heritable epigenetic variation play in phenotypic evolution ? Bioscience 60(3):232–237

    Article  Google Scholar 

  • Romanes GJ (1888) Lamarckism versus Darwinism. Nature 38(August):413–413. https://doi.org/10.1038/038413a0

    Article  Google Scholar 

  • Rosen R (1991) Life Itself. A Comprehensive Inquiry into the Nature. Columbia University Press, New York, Origin and Fabrication of Life

    Google Scholar 

  • Slatkin M (2009) Epigenetic inheritance and the missing heritability problem. Genetics 182(3):845–850

    Article  PubMed  PubMed Central  Google Scholar 

  • Soto A, Longo G, Miquel P-A, Montévil M, Mossio M, Perret N, Pocheville A, Sonnenschein C (2016) Toward a theory of organisms: three founding principles in search of a useful integration. Prog Biophys Mol Biol 122(1):77–82

    Article  PubMed  PubMed Central  Google Scholar 

  • Spencer H (1864) The principles of biology Volume 1. Williams and Norgate, Edinburgh

  • Stearns FW (2010) One hundred years of pleiotropy: a retrospective. Genetics 186(3):767–773. https://doi.org/10.1534/genetics.110.122549. Erratum in: Genetics. 2011 Jan;187(1):355. PMID: 21062962; PMCID: PMC2975297

  • Stewart J (2004) La vie existe-t-elle ?: Réconcilier génétique et biologie. Vuibert, Paris

    Google Scholar 

  • Stotz K (2008) The ingredients for a postgenomic synthesis of nature and nurture. Philos Psychol 21(3):359–381

    Article  Google Scholar 

  • Stotz K (2017) Why developmental niche construction is not selective niche construction: and why it matters. Interface Focus 7:20160157

    Article  PubMed  PubMed Central  Google Scholar 

  • Šustar P (2007) Crick’s notion of genetic information and the ‘central dogma’ of molecular biology. Br J Philos Sci 58(1):13–24

    Article  Google Scholar 

  • Sutton WS (1903) The chromosomes in heredity. Biol Bull 4(5):231–250

    Article  Google Scholar 

  • Trerotola M, Relli V, Simeone P, Alberti S (2015) Epigenetic inheritance and the missing heritability. Hum Genomics 9(1):1–12

    Article  CAS  Google Scholar 

  • Urry LA, Reece JB, Cain ML, Wasserman SA, Minorsky PV (2016) Campbell Biology, 11th edn. Pearson, New York

    Google Scholar 

  • Waddington CH (1939) An introduction to modern genetics. Macmillan, New York

  • Waddington CH (1942) The epigenotype. Endeavour 1:18–20

    Google Scholar 

  • Waddington CH (1953) Genetic assimilation of an acquired character. Evolution 7(2):118–126

    Article  Google Scholar 

  • Walsh DM (2010) Two Neo-Darwinisms. Hist Philos Life Sci 32(2–3):317–339

    PubMed  Google Scholar 

  • Walsh D (2015) Organisms, agency, and evolution. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Watson J, Crick F (1953a) Molecular structure of nucleic acids. Nature 171:737–738

    Article  CAS  PubMed  Google Scholar 

  • Watson J, Crick F (1953b) Genetical implications of the structure of deoxyribonucleic acid. Nature 171:964–967

    Article  CAS  PubMed  Google Scholar 

  • Weismann A (1883) [1990]. De l’hérédité. In: Lenay C (ed) La découverte des lois de l’hérédité (1862–1900): une anthologie. Presse Pocket, Paris, pp 169–212

    Google Scholar 

  • Weismann A (1893) The Germ-Plasm a Theory of Heredity. Translated by Newton W. Parker and Harriet Rönnfeldt. Charles Scribner’s Sons, New York

  • Weismann (1904) The Evolution Theory Vol. 2. Translated by Arthur J. Thomson. Edward Arnold, London

  • Wilkins MHF, Stokes AR, Wilson HR (1953) Molecular structure of nucleic acids: molecular structure of deoxypentose nucleic acids. Nature 171(4356):738–740. https://doi.org/10.1038/171738a0

    Article  CAS  PubMed  Google Scholar 

  • Woodward J (2003) Making things happen: a theory of causal explanation. Oxford University Press, New York

    Google Scholar 

Download references

Acknowledgements

We thank Dominique De Vienne, Andràs Paldi, Francesca Merlin, Lounès Chikhi, Paul-Antoine Miquel, Alexis Boisseau, Jonathan Racine, Mathilde Tahar, Emmanuelle Maciel, and three anonymous reviewers for insightful comments on earlier versions of the manuscript.

Funding

GP was supported by an ANR grant (Envirobiosoc, ANR-19-CE26-0018) to Francesca Merlin.

Author information

Authors and Affiliations

Authors

Contributions

GP wrote the first draft, and all authors participated in substantial discussions and revisions to the manuscript.

Corresponding author

Correspondence to Gaëlle Pontarotti.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Special Issue “The relationship between genotype and phenotype: new insights on an old question”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pontarotti, G., Mossio, M. & Pocheville, A. The genotype–phenotype distinction: from Mendelian genetics to 21st century biology. Genetica 150, 223–234 (2022). https://doi.org/10.1007/s10709-022-00159-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-022-00159-5

Keywords

Navigation