Skip to main content

Advertisement

Log in

Pathogen resistance in Sphagneticola trilobata (Singapore daisy): molecular associations and differentially expressed genes in response to disease from a widespread fungus

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Understanding the molecular associations underlying pathogen resistance in invasive plant species is likely to provide useful insights into the effective control of alien plants, thereby facilitating the conservation of native biodiversity. In the current study, we investigated pathogen resistance in an invasive clonal plant, Sphagneticola trilobata, at the molecular level. Sphagneticola trilobata (i.e., Singapore daisy) is a noxious weed that affects both terrestrial and aquatic ecosystems, and is less affected by pathogens in the wild than co-occurring native species. We used Illumina sequencing to investigate the transcriptome of S. trilobata following infection by a globally distributed generalist pathogen (Rhizoctonia solani). RNA was extracted from leaves of inoculated and un-inoculated control plants, and a draft transcriptome of S. trilobata was generated to examine the molecular response of this species following infection. We obtained a total of 49,961,014 (94.3%) clean reads for control (un-inoculated plants) and 54,182,844 (94.5%) for the infected treatment (inoculated with R. solani). Our analyses facilitated the discovery of 117,768 de novo assembled contigs and 78,916 unigenes. Of these, we identified 3506 differentially expressed genes and 60 hormones associated with pathogen resistance. Numerous genes, including candidate genes, were associated with plant-pathogen interactions and stress response in S. trilobata. Many recognitions, signaling, and defense genes were differentially regulated between treatments, which were confirmed by qRT-PCR. Overall, our findings improve our understanding of the genes and molecular associations involved in plant defense of a rapidly spreading invasive clonal weed, and serve as a valuable resource for further work on mechanism of disease resistance and managing invasive plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw data was deposited at the NCBI Short Read Archive (SRA) database (https://www.ncbi.nlm.nih.gov/sra) under accession number PRJNA558452 (SRX6649373 and SRX6806069 for the control treatment, and SRX6649374 and SRX6806070 for the infection treatment).

References

  • Ahmed HMM, Hildebrand L, Wimmer EA (2019) Improvement and use of CRISPR/Cas9 to engineer a sperm-marking strain for the invasive fruit pest Drosophila suzukii. BMC Biotechnol 19:85

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 25:25–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brautigam A, Mullick T, Schliesky S, Weber AP (2011) Critical assessment of assembly strategies for non-model species mRNA-seq data and application of next-generation sequencing to the comparison of C3 and C4 species. J Exp Bot 62:3093–3102

    PubMed  Google Scholar 

  • Cai ML, Zhang QL, Zhang JJ, Ding WQ, Huang HY, Peng CL (2020) Comparative physiological and transcriptomic analyses of photosynthesis in Sphagneticola calendulacea (L.) pruski and Sphagneticola trilobata (L) pruski. Sci Rep 10:17810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Q, Wu WW, Qi SS, Cheng H, Li Q, Ran Q, Dai ZC, Du DL, Egan S, Thomas T (2019) Arbuscular mycorrhizal fungi improve the growth and disease resistance of the invasive plant Wedelia trilobata. J Appl Microbiol. https://doi.org/10.1111/jam.14415

    Article  PubMed  Google Scholar 

  • Colautti RI, Lau JA (2015) Contemporary evolution during invasion: Evidence for differentiation, natural selection, and local adaptation. Mol Ecol 24:1999–2017

    PubMed  Google Scholar 

  • Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M (2005) Blast2go: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    CAS  PubMed  Google Scholar 

  • Dai ZC, Fu W, Qi SS, Zhai DL, Chen SC, Wan LY, Huang P, Du DL (2016) Different responses of an invasive clonal plant Wedelia trilobata and its native congener to gibberellin: Implications for biological invasion. J Chem Ecol 42:85–94

    CAS  PubMed  Google Scholar 

  • Dai ZC, Qi SS, Miao SL, Liu YT, Tian YF, Zhai DL, Huang P, Du DL (2015) Isolation of NBS-LRR RGAs from invasive Wedelia trilobata and the calculation of evolutionary rates to understand bioinvasion from a molecular evolution perspective. Biochem Syst Ecol 61:19–27

    CAS  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: A general theory of invasibility. J Ecol 88:528–534

    Google Scholar 

  • De Vleesschauwer D, Xu D, Hofte M (2014) Making sense of hormone-mediated defense networking: from rice to Arabidopsis. Front Plant Sci 5:611

    PubMed  PubMed Central  Google Scholar 

  • Denance N, Sanchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: The role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:155

    PubMed  PubMed Central  Google Scholar 

  • Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in plant disease resistance. Plant Sci 207:79–87

    CAS  PubMed  Google Scholar 

  • DeWalt SJ, Denslow JS, Ickes K (2004) Natural-enemy release facilitates habitat expansion of the invasive tropical shrub Clidemia hirta. Ecology 85:471–483

    Google Scholar 

  • Dlugosch KM, Alice Cang F, Barker BS, Andonian K, Swope SM, Rieseberg LH (2015) Evolution of invasiveness through increased resource use in a vacant niche. Nat Plants 1:15066

    PubMed  PubMed Central  Google Scholar 

  • Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant–pathogen interactions. Nat Reviews Gene 11:539

    CAS  Google Scholar 

  • Engelkes T, Morriën E, Verhoeven KJF, Bezemer TM, Biere A, Harvey JA, McIntyre LM, Tamis WLM, van der Putten WH (2008) Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature 456:946

    CAS  PubMed  Google Scholar 

  • Garg R, Patel RK, Tyagi AK, Jain M (2011) De novo assembly of chickpea transcriptome using short reads for gene discovery and marker identification. DNA Res 18:53–63

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    CAS  PubMed  Google Scholar 

  • Grant MR, Jones JDG (2009) Hormone (dis) harmony moulds plant health and disease. Science 324:750–752

    CAS  PubMed  Google Scholar 

  • Guggisberg A, Lai Z, Huang J, Rieseberg LH (2013) Transcriptome divergence between introduced and native populations of Canada thistle, Cirsium arvense. New Phytol 199:595–608

    CAS  PubMed  Google Scholar 

  • Hannon GJ (2010) Fastx-toolkit. http://hannonlab.Cshl.Edu/fastx_toolkit.

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California Agric Exp Stat 347:1–32

    Google Scholar 

  • Hobbs RJ, Higgs E, Harris JA (2009) Novel ecosystems: Implications for conservation and restoration. Trends Ecol Evol 24:599–605

    PubMed  Google Scholar 

  • Hodgins KA, Lai Z, Nurkowski K, Huang J, Rieseberg LH (2013) The molecular basis of invasiveness: differences in gene expression of native and introduced common ragweed (Ambrosia artemisiifolia) in stressful and benign environments. Mol Ecol 22:2496–2510

    CAS  PubMed  Google Scholar 

  • Hodgins KA, Rieseberg L (2011) Genetic differentiation in life-history traits of introduced and native common ragweed (Ambrosia artemisiifolia) populations. J Evol Biol 24:2731–2749

    CAS  PubMed  Google Scholar 

  • Huang YL, Fang XT, Lu L, Yan YB, Chen SF, Hu L, Zhu CC, Ge XJ, Shi SH (2012) Transcriptome analysis of an invasive weed Mikania micrantha. Biol Plant 56:111–116

    CAS  Google Scholar 

  • IUCN (2010) Global invasive species database (2019). http://www.Iucngisd.Org/gisd/100_worst.Php. Accessed 13 Sept 2019.

  • Jain D, Khurana JP (2018) Role of pathogenesis-related (PR) proteins in plant defense mechanism. In: Singh A, Singh IK (eds) Molecular aspects of plant-pathogen interaction. Springer, Singapore, pp 265–281

    Google Scholar 

  • Jain M (2011) A next-generation approach to the characterization of a non-model plant transcriptome. Curr Sci 101:1435–1439

    Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323

    CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Google Scholar 

  • Koch E, Slusarenko A (1990) Arabidopsis is susceptible to infection by a downy mildew fungus. Plant Cell 2:437–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumschick S, Hufbauer RA, Alba C, Blumenthal DM (2013) Evolution of fast-growing and more resistant phenotypes in introduced common mullein (Verbascum thapsus). J Ecol 101:378–387

    Google Scholar 

  • Lai Z, Kane NC, Zou Y, Rieseberg LH (2008) Natural variation in gene expression between wild and weedy populations of Helianthus annuus. Genetics 179:1881–1890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853

    CAS  PubMed  Google Scholar 

  • Lev-Yadun S (2015) Plant development: Cell movement relative to each other is both common and very important. Plant Signal Behav 10:e991566

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Xie Y (2002) Invasive alien species in China. China Forestry Publishing House, Beijing

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCT method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Lopez MA, Bannenberg G, Castresana C (2008) Controlling hormone signaling is a plant and pathogen challenge for growth and survival. Curr Opin Plant Biol 11:420–427

    CAS  PubMed  Google Scholar 

  • Manoharan B, Qi SS, Dhandapani V, Chen Q, Rutherford S, Wan JSH, Jegadeesan S, Yang HY, Li Q, Li J, Dai ZC, Du DL (2019) Gene expression profiling reveals enhanced defense responses in an invasive weed compared to its native congener during pathogenesis. Int J Mol Sci 20:4916

    CAS  PubMed Central  Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, Geer RC, He J, Gwadz M, Hurwitz DI, Lanczycki CJ, Lu F, Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D, Zheng C, Bryant SH (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43:D222-226

    CAS  PubMed  Google Scholar 

  • Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH (2002) CDD: A database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res 30:281–283

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCartney MA, Mallez S, Gohl DM (2019) Genome projects in invasion biology. Conserv Genet 20:1201–1222

    CAS  Google Scholar 

  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    CAS  PubMed  Google Scholar 

  • Peng Y, Gao X, Li R, Cao G (2014a) Transcriptome sequencing and de novo analysis of Youngia japonica using the illumina platform. PLoS ONE 9:e90636

    PubMed  PubMed Central  Google Scholar 

  • Peng Y, Lai Z, Lane T, Nageswara-Rao M, Okada M, Jasieniuk M, O’Geen H, Kim RW, Sammons RD, Rieseberg LH, Stewart CN (2014b) De novo genome assembly of the economically important weed horseweed using integrated data from multiple sequencing platforms. Plant Physiol 166:1241–1254

    PubMed  PubMed Central  Google Scholar 

  • Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5:308–316

    CAS  PubMed  Google Scholar 

  • Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends Plant Sci 13:288–294

    CAS  PubMed  Google Scholar 

  • Pyšek P, Richardson DM (2010a) Invasive species, environmental change and management, and health. Annu Rev Environ Resour 35:25–55

    Google Scholar 

  • Pyšek P, Richardson DM (2010b) Invasive species, environmental change and management, and health. Annu Rev Environ Resour 35:25–55

    Google Scholar 

  • Qi SS, Dai ZC, Miao SL, Zhai DL, Si CC, Huang P, Wang RP, Du DL (2014a) Light limitation and litter of an invasive clonal plant, Wedelia trilobata, inhibit its seedling recruitment. Ann Bot 114:425–433

    PubMed  PubMed Central  Google Scholar 

  • Qi SS, Dai ZC, Zhai DL, Chen SC, Si CC, Huang P, Wang RP, Zhong QX, Du DL (2014b) Curvilinear effects of invasive plants on plant diversity: plant community invaded by Sphagneticola trilobata. PLoS ONE 9:e113964

    PubMed  PubMed Central  Google Scholar 

  • Qi SS, Liu YJ, Dai ZC, Wan LY, Du DL, Ju RT, Wan JSH, Bonser SP (2020) Allelopathy confers an invasive Wedelia higher resistance to generalist herbivore and pathogen enemies over its native congener. Oecologia 192:415–423

    PubMed  Google Scholar 

  • Qin Z, Zhang JE, DiTommaso A, Wang RL, Wu RS (2015) Predicting invasions of Wedelia trilobata (l.) Hitchc. with Maxent and GARP models. J Plant Res 128:763–775

    PubMed  Google Scholar 

  • Reinhart KO, Tytgat T, Van der Putten WH, Clay K (2010) Virulence of soil-borne pathogens and invasion by Prunus serotina. New Phytol 186:484–495

    PubMed  Google Scholar 

  • Rius M, Bourne S, Hornsby HG, Chapman MA (2015) Applications of next-generation sequencing to the study of biological invasions. Curr Zool 61:488–504

    Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defense: More than just JASMONATE-SALICYLATE antagonism. Annu Rev Phytopathol 49:317–343

    CAS  PubMed  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Hunt M (2013) Systemic acquired resistance. Plant Physiol 1:179–184

    Google Scholar 

  • Santner A, Calderon-Villalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5:301–307

    CAS  PubMed  Google Scholar 

  • Si CC, Dai ZC, Lin Y, Qi SS, Huang P, Miao SL, Du DL (2014) Local adaptation and phenotypic plasticity both occurred in Wedelia trilobata invasion across a tropical island. Biol Invas 16:2323–2337

    Google Scholar 

  • Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM (2015) BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31:3210–3212

    PubMed  Google Scholar 

  • Sturrock CJ, Woodhal J, Brown M, Walker C, Mooney SJ, Ray RV (2015) Effects of damping-off caused by Rhizoctonia solani anastomosis group 2–1 on roots of wheat and oil seed rape quantified using X-ray Computed Tomography and real-time PCR. Front Plant Sci 6:461

    PubMed  PubMed Central  Google Scholar 

  • Su CL, Chao YT, Alex Chang YC, Chen WC, Chen CY, Lee AY, Hwa KT, Shih MC (2011) De novo assembly of expressed transcripts and global analysis of the Phalaenopsis aphrodite transcriptome. Plant Cell Physiol 52:1501–1514

    CAS  PubMed  Google Scholar 

  • Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4:41

    PubMed  PubMed Central  Google Scholar 

  • Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278:631–637

    CAS  PubMed  Google Scholar 

  • Unamba CIN, Nag A, Sharma RK (2015) Next generation sequencing technologies: the doorway to the unexplored genomics of non-model plants. Front Plant Sci. https://doi.org/10.3389/fpls.2015.01074

    Article  PubMed  PubMed Central  Google Scholar 

  • van Kleunen M, Bossdorf O, Dawson W (2018) The ecology and evolution of alien plants. Annu Rev Ecol Evol S 49:25–47

    Google Scholar 

  • van Kleunen M, Dawson W, Essl F, Pergl J, Winter M, Weber E, Kreft H, Weigelt P, Kartesz J, Nishino M, Antonova LA, Barcelona JF, Cabezas FJ, Cárdenas D, Cárdenas-Toro J, Castaño N, Chacón E, Chatelain C, Ebel AL, Figueiredo E, Fuentes N, Groom QJ, Henderson L, Inderjit KA, Masciadri S, Meerman J, Morozova O, Moser D, Nickrent DL, Patzelt A, Pelser PB, Baptiste MP, Poopath M, Schulze M, Seebens H, Shu WS, Thomas J, Velayos M, Wieringa JJ, Pyšek P (2015) Global exchange and accumulation of non-native plants. Nature 525:100–103

    PubMed  Google Scholar 

  • Wu J, Zhang Y, Zhang H, Huang H, Folta KM, Lu J (2010) Whole genome wide expression profiles of Vitis amurensis grape responding to downy mildew by using Solexa sequencing technology. BMC Plant Biol 10:234

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (32171509, 32071521, 32001087), the Natural Science Foundation of Jiangsu (BK20211321), Jiangsu Planned Projects for Postdoctoral Research Funds (2021K160B). Part of the funding for this research was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). We are grateful to four anonymous reviewers for comments that enabled us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SSQ, ZCD, DLD conceived the study, designed the experiments and collected samples; BM, VD, SJ performed data analysis; PH contributed Actin gene sequences of study species; SSQ, and BM performed experiments and wrote the manuscript; SR, JSHW, ZCD, SJ and VD reviewed the manuscript. All authors contributed to the manuscript at various stages.

Corresponding authors

Correspondence to Zhi-Cong Dai or Dao-Lin Du.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, SS., Manoharan, B., Dhandapani, V. et al. Pathogen resistance in Sphagneticola trilobata (Singapore daisy): molecular associations and differentially expressed genes in response to disease from a widespread fungus. Genetica 150, 13–26 (2022). https://doi.org/10.1007/s10709-021-00147-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-021-00147-1

Keywords

Navigation