Skip to main content
Log in

Genome-wide mining of potentially-hypervariable microsatellites and validation of markers in Momordica charantia L.

  • Short Communication
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Relatively large number of bitter melon microsatellite markers have been reported; however, only few resulted in successful PCR amplification and a small fraction shown polymorphisms. This limited chance of recovering polymorphic markers makes the primer screening a cost-demanding process. To test the hypothesis that microsatellites with longer motifs as well as shorter motifs repeated substantially shall have better prospects to be polymorphic, we performed a genome-wide microsatellite mining. We selected a sample of genome-wide microsatellites with prescribed motif lengths or satisfying a target repeat number, which were considered potentially-hyper variable, for primer designing and validation. Seventy five microsatellites satisfying these criteria were identified, of which 69 were validated through successful PCR amplification. Among them, 40 (53.33% of the markers identified) were polymorphic. This result showed a significantly higher success compared to our initial results of 51 (20.64%) polymorphic markers out of the 188 amplified when 247 previously reported markers were screened. The screening of two cultivars revealed that markers were efficient to identify up to three alleles. The characterization of these 69 new markers with 247 markers previously reported showed that di-nucleotide motifs were most abundant, followed by tri- and tetra-nucleotide motifs. TC motif markers were most polymorphic (12.08%) followed by AG and CT motifs (both 9.89%). Similarly, AGA (6.59%) and TATT (3.29%) were most polymorphic among the tri- and tetra-nucleotide motifs. These 69 hypervariable microsatellite markers along with 188 markers initially validated in this study shall be useful for phylogenetic analyses, studies of linkage, QTL, and association mapping in bitter melon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepu Mathew.

Ethics declarations

Conflict of interest

There is no conflicts of interest to be declared.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajinath, L.S., Mathew, D. Genome-wide mining of potentially-hypervariable microsatellites and validation of markers in Momordica charantia L.. Genetica 150, 77–85 (2022). https://doi.org/10.1007/s10709-021-00142-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-021-00142-6

Keywords

Navigation