Skip to main content
Log in

Associating complex traits with genetic variants: polygenic risk scores, pleiotropy and endophenotypes

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Genotype–phenotype causal modeling has evolved significantly since Johannsen’s and Wright’s original designs were published. The development of genomewide assays to interrogate and detect possible causal variants associated with complex traits has expanded the scope of genotype–phenotype research considerably. Clusters of causal variants discovered by genomewide assays and associated with complex traits have been used to develop polygenic risk scores to predict clinical diagnoses of multidimensional human disorders. However, genomewide investigations have met with many challenges to their research designs and statistical complexities which have hindered the reliability and validity of their predictions. Findings linked to differences in heritability estimates between causal clusters and complex traits among unrelated individuals remain a research area of some controversy. Causal models developed from case–control studies as opposed to experiments, as well as other issues concerning the genotype–phenotype causal model and the extent to which various forms of pleiotropy and the concept of the endophenotype add to its complexity, will be reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Benchek PH, Morris NJ (2013) How meaningful are heritability estimates of liability? Hum Genet 132:1351–1360

    Article  PubMed  Google Scholar 

  • Bensen JT, Lange LA, Langefeld CD, Chang BL, Bleecker ER, Meyers DA, Xu J (2003) Exploring pleiotropy using principal components. BMC Genet 132(12):1351–1360

    Google Scholar 

  • Boyle EA, Li YI, Pritchard JK (2017) An expanded view of complex traits: from polygenic to omnigenic. Cell 169:1177–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook TD, Campbell DC (2002) Experiments and Generalized Causal Inference. Experimental and Quasi-Experimental Designs for Generalized Causal Inference. Houghton Mifflin Company, New York, pp 1–32

    Google Scholar 

  • Cordell HJ (2009) Detecting gene-gene interactions that underlie human diseases. Nat Rev Genet 10(6):392–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtis D (2007) Allelic association studies of genome wide association data can reveal errors in marker position assignments. BMC Genet 8:30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darwin C (1868) The Variation of Animals and Plants under Domestication. John Murray, London

    Google Scholar 

  • Deary IJ, Yang J, Davies G, Harris SE, Tenesa A, Liewald D, Luciano M, Lopez LM, Gow AJ, Corley J et al (2012) Genetic contributions to stability and change in intelligence from childhood to old age. Nature 482:212–215

    Article  CAS  PubMed  Google Scholar 

  • Delano D, Eberle M, Galver L, Rosenow C (2010) Array differences in genomic coverage and data quality impact GWAS success. DNA Analysis, Illumina Inc., San Diego, CA, White Paper

    Google Scholar 

  • DeWan AT (2018) Gene-Gene and Gene-Environment Interactions. Methods Mol Biol 1793:89–110

    Article  CAS  PubMed  Google Scholar 

  • Dudbridge F (2013) Power and predictive accuracy of polygenic risk scores. PLoS Genet 9:e1003348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finkel D, Pedersen NL, Plomin R, McClearn GE (1998) Longitudinal and cross-sectional twin data on cognitive abilities in adulthood: the Swedish adoption/twin study of aging. Dev Psychol 34:1400–1413

    Article  CAS  PubMed  Google Scholar 

  • Fisch GS (2012) Nosology and epidemiology in autism: classification counts. Am J Med Genet C 160C:91–103

    Article  Google Scholar 

  • Galton F (1865) Hereditary talent and character. Macmillan’s Mag 12(1865):157–166

    Google Scholar 

  • Galton F (1876) A theory of heredity. J Anthropol Inst G B Irel 5:329–348

    Google Scholar 

  • Gayan J, Gonzalez-Perez A, Bermudo F, Saez ME, Royo JL, Quintas A, Galan JJ, Moron FJ, Ramirez-Lorca R, Real LM et al (2008) A method for detecting epistasis in genome-wide studies using case-control multi-locus association analysis. BMC Genomics 9:360

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gelman A, Hill J, Vehtari A (2021) Interactions are harder to estimate than main effects. (Gelman A, Hill J, Vehtari A): Regression and Other Stories. Cambridge University Press, Cambridge, pp 301–302

    Google Scholar 

  • Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645

    Article  PubMed  Google Scholar 

  • Gottesman II, Shields J (1973) Genetic theorizing and schizophrenia. Br J Psychiatry 122:15–30

    Article  CAS  PubMed  Google Scholar 

  • Greenwood TA, Light GA, Swerdlow NR, Radant AD, Braff DL (2012) Association analysis of 94 candidate genes and schizophrenia-related endophenotypes. PLoS One 7:e29630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gui J, Moore JH, Williams SM et al (2013) A simple and computationally efficient approach to multifactor dimensionality reduction analysis of gene-gene interactions for quantitative traits. PLoS One 8(6):e66545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19:376–382

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin J (1998) Seven types of pleiotropy. Int J Dev Biol 42:501–505

    CAS  PubMed  Google Scholar 

  • Holland PW (1986) Statistics and Causal Inference. J Amer Stat Assoc 81:945–960

    Article  Google Scholar 

  • Holland PW, Rubin DB (1988) "Casual Inference in R.etrospective Studies". Evaluation Review. Sage Publications, Inc. Newbury Park:CA

  • Iacono WG, Vaidyanathan U, Vrieze SI, Malone SM (2014) Knowns and unknowns for psychophysiological endophenotypes: integration and response to commentaries. Psychophysiology 51:1339–1347

    Article  PubMed  PubMed Central  Google Scholar 

  • Iacono WG, Malone SM, Vrieze SI (2017) Endophenotype best practices. Int J Psychophysiol 111:115–144

    Article  PubMed  Google Scholar 

  • Ioannidis JPA, Thomas G, Daly MJ (2009) Validating, augmenting and refining genome-wide association signals. Nature Rev Genet 10:318–329

    Article  CAS  PubMed  Google Scholar 

  • Ioannidis JP, Boffetta P, Little J, O’Brien TR et al (2008) Assessment of cumulative evidence on genetic associations: interim guidelines. Int J Epidemiol 10(5):37120–37132

    Google Scholar 

  • Ioannidis JP (2006) Commentary: grading the credibility of molecular evidence for complex diseases. Int J Epidemiol 35:572–578

    Article  PubMed  Google Scholar 

  • Jablensky A (2010) Diagnostic concept of schizophrenia. Dialogues Clin Neurosci 12:271–287

    Article  PubMed  PubMed Central  Google Scholar 

  • Janssens ACJW (2019) Validity of polygenic risk scores: are we measuring what we think we are? Hum Mol Genet 28:143–150

    Article  CAS  Google Scholar 

  • Janssens ACJW, Ioannidis JPA, Bedrosian S, Boffetta P et al (2011) Strengthening the reporting of genetic risk prediction studies (GRIPS): explanation and elaboration. Eur J Clin Invest 41:1010–1035

    Article  PubMed  Google Scholar 

  • Johannsen W (1911) The genotype conception of heredity. Am Nat 45:129–159

    Article  Google Scholar 

  • John B, Lewis KR (1966) Chromosome variability and geographic distribution in insects. Science 152:711–721

    Article  CAS  PubMed  Google Scholar 

  • Jordan DM, Verbanck M, Do R (2019) HOPS: a quantitative score reveals pervasive horizontal pleiotropy in human genetic variation is driven by extreme polygenicity of human traits and diseases. Genome Biol 20(1):222

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanner L (1943) Autistic disturbances of affective contact. Nervous Child 2:217–250

    Google Scholar 

  • Kendler KS, Neale MC (2010) Endophenotype: A conceptual analysis. Mol Psychiatry 15:789–797

    Article  PubMed  PubMed Central  Google Scholar 

  • van Kippersluis H, Rietveld CA (2018) Pleiotropy-robust Mendelian randomization.Int J Epidemiol 47: 1279–1288

  • Kirkpatrick RM, McGue M, Iacono WG, Miller MB, Basu S, Pankratz N (2014) Low-frequency copy-number variants and general cognitive ability: no evidence of association. Intelligence 42:98–106

    Article  PubMed  Google Scholar 

  • Kumar SK, Feldman MW, Rehkopf DH, Tuljapurkar S (2016) Limitations of GCTA as a solution to the missing heritability problem. Proc Natl Acad Sci USA 113:E61–E70

    CAS  Google Scholar 

  • Lambert SA, Abraham G, Inouye M (2019) Towards clinical utility of polygenic risk scores. Hum Mol Genet 28(R2):R133–R142

    Article  CAS  PubMed  Google Scholar 

  • Larifla L, Armand C, Bangou J, Blanchet-Deverly A, Numeric P, Fonteau C et al (2017) Association of APOE gene polymorphism with lipid profile and coronary artery disease in Afro-Caribbeans. PLoS ONE 12(7):e0181620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee PH, Feng YA, Smoller JW (2021) Pleiotropy and cross-disorder genetics among psychiatric disorders. Biol Psychiatry 89:20–31

    Article  CAS  PubMed  Google Scholar 

  • Lewontin R (1974) Annotation: the analysis of variance and the analysis of causes. Am J Hum Genet 26:400–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewontin R (2006) The analysis of variance and the analysis of causes. 1974. Int J Epidemiol 35:520–525

    Article  CAS  PubMed  Google Scholar 

  • Li D, Won S (2016) Efficient strategy to identify gene-gene interactions and its application to type 2 diabetes. Genomics Inform 14:160–165

    Article  PubMed  PubMed Central  Google Scholar 

  • de Los Campos G, Sorensen DA, Toro MA (2019) Imperfect Linkage Disequilibrium Generates Phantom Epistasis (& Perils of Big Data) G3 (Bethesda), 9:1429–1436

  • Lyons MJ, York TP, Franz CE, Grant MD, Eaves LJ, Jacobson KC, Kremen WS (2009) Genes determine stability and the environment determines change in cognitive ability during 35 years of adulthood. Psychol Sci 20:1146–1152

    Article  PubMed  Google Scholar 

  • Maher B (2008) Personal genomes: The case of the missing heritability. Nature 456:18–21

    Article  CAS  PubMed  Google Scholar 

  • Mandolini GM, Lazzaretti M, Pigoni A, Delvecchio G, Soares JC, Brambilla P (2019) The impact of BDNF Val66Met polymorphism on cognition in Bipolar Disorder: A review: J Affect Disord 243: 552–558

  • Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363:166–176

    Article  CAS  PubMed  Google Scholar 

  • McGue M, Christensen K (2013) Growing old but not growing apart: twin similarity in the latter half of the lifespan. Behav Genet 43:1–12

    Article  PubMed  Google Scholar 

  • Meng Y, Groth S, Quinn JR, Bisognano J, Wu TT (2017) An exploration of gene-gene interactions and their effects on hypertension. Int J Genomics 2017:7208318

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel CJ (2016) Analytical complexity in detection of gene variant-by-environment exposure interactions in high-throughput genomic and exposomic research. Curr Envir Health Rpt 3:64–72

    Article  CAS  Google Scholar 

  • Pavličev M (2016) Pleiotropy and Its Evolution: Connecting Evo-Devo and Population Genetics. L. Nuño de la Rosa, G.B. Müller (eds.), Evolutionary Developmental Biology, Springer International Publishing, Switzerland

  • Pepe MS, Janes H, Longton G, Leisenring W, Newcomb P (2004) Limitations of the odds ratio in gauging the performance of a diagnostic, prognostic, or screening marker. Am J Epidemiol 159:882–890

    Article  PubMed  Google Scholar 

  • Plomin R, Deary IJ (2015) Genetics and intelligence differences: five special findings. Mol Psychiatry 20:98–108

    Article  CAS  PubMed  Google Scholar 

  • Rao DC, Morton NE, Yee S (1974) Analysis of family resemblance. II. A linear model for familial correlation. Am J Hum Genet 26:331–359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds CA, Finkel D, McArdle JJ, Gatz M, Berg S, Pedersen NL (2005) Quantitative genetic analysis of latent growth curve models of cognitive abilities in adulthood. Dev Psychol 41:3–16

    Article  PubMed  Google Scholar 

  • Ryan TP (1997) Multicollinearity and the “Wrong signs” Problem. (Ryan TP): Modern Regression Methods. Wiley, New York, pp 131–136

    Google Scholar 

  • Salinas YD, Wang Z, DeWan AT (2018) Statistical analysis of multiple phenotypes in genetic epidemiologic studies: from cross-phenotype associations to pleiotropy. Am J Epidemiol 187:855–863

    Article  PubMed  Google Scholar 

  • Schaid DJ, Tong X, Larrabee B, Kennedy RB, Poland GA, Sinnwell JP (2016) Statistical methods for testing genetic pleiotropy. Genetics 204:483–497

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi H, Kichaev G, Pasaniuc B (2016) Contrasting the genetic architecture of 30 complex traits from summary association data. Am J Hum Genet 204(2):483–497

    Google Scholar 

  • Soa H-C, Sham PC (2017) Improving polygenic risk prediction from summary statistics by an empirical Bayes approach. Sci Rep 7:41262

    Article  CAS  Google Scholar 

  • Solovieff N, Cotsapas C, Lee P et al (2013) Pleiotropy in complex traits: challenges and strategies. Nat Rev Genet 14:483–495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stearns FW (2010) One hundred years of pleiotropy: a retrospective. Genetics 186:767–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447:661–678

  • van Beijsterveldt CEM, Overbeek LIH, Rozendaal L, McMaster MTB, Glasner TJ, Bartels M, Vink JM, Martin NG, Dolan CV, Boomsma DI (2016) Chorionicity and heritability estimates from twin studies: the prenatal environment of twins and their resemblance across a large number of traits. Behav Genet 46:304–314

    Article  PubMed  Google Scholar 

  • Visscher PM, Wray NR (2015) Concepts and misconceptions about the polygenic additive model applied to disease. Hum Hered 80:165–170

    Article  CAS  PubMed  Google Scholar 

  • Visscher PM, Brown MA, McCarthy MI, Yang J (2012) Five years of GWAS discovery. Am J Hum Genet 90:7–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, Yang J (2017) 10 Years of GWAS discovery: biology, function, and translation. Am J Hum Genet 101:5–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan X, Yang C, Yang Q, Xue H, Fan X, Tang NLS, Yu W (2010) BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies. Am J Hum Genet 87:325–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei WH, Hemani G, Haley CS (2014) Detecting epistasis in human complex traits. Nat Rev Genet 15:722–733

    Article  CAS  PubMed  Google Scholar 

  • Wing L, Gould J (1979) Severe impairments of social interaction and associated abnormalities in children: epidemiology and classification. J Autism Dev Disord 9:11–29

    Article  CAS  PubMed  Google Scholar 

  • Winther RG (2001) August Weismann on Germ-Plasm Variation. J Hist Biol 34:517–555

    Article  CAS  PubMed  Google Scholar 

  • Wray NR, Goddard ME, Visscher PM (2007) Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res 17:1520–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM (2013) Pitfalls of predicting complex traits from SNPs. Nat Rev Genet 14:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright S (1921) Correlation and causation. J Agric Res 20:557–585

    Google Scholar 

  • Xue H, Pan W (2020) Inferring causal direction between two traits in the presence of horizontal pleiotropy with GWAS summary data. PLoS Genet 16(11):e1009105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Amer J Hum Genet 88:76–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuk O, Hechter E, Sunyaev SR, Lander ES (2012) The mystery of missing heritability: genetic interactions create phantom heritability. Proc Natl Acad Sci USA 109:1193–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuk O, Schaffner SF, Samocha K, Do R, Hechter E, Kathiresan S, Daly MJ, Neale BM, Sunyaev SR, Lander ES (2014) Searching for missing heritability: designing rare variant association studies. Proc Natl Acad Sci U S A 111:E455–E464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gene S. Fisch.

Ethics declarations

Conflicts of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Special Issue “The relationship between genotype and phenotype: new insights on an old question”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fisch, G.S. Associating complex traits with genetic variants: polygenic risk scores, pleiotropy and endophenotypes. Genetica 150, 183–197 (2022). https://doi.org/10.1007/s10709-021-00138-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-021-00138-2

Keywords

Navigation