Skip to main content
Log in

Genome-wide identification of expansin gene family in barley and drought-related expansins identification based on RNA-seq

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Expansins are cell wall loosening proteins and involved in various developmental processes and abiotic stress. No systematic research, however, has been conducted on expansin genes family in barley. A total of 46 expansins were identified and could be classified into three subfamilies in Hordeum vulgare: HvEXPA, HvEXPB, and HvEXLA. All expansin proteins contained two conserved domains: DPBB_1 and Pollen_allerg_1. Expansins, in the same subfamily, share similar motifs composition and exon-intron organization; but greater differences were found among different subfamilies. Expansins are distributed unevenly on 7 barley chromosomes; tandem duplicates, including the collinear tandem array, contribute to the forming of the expansin genes family in barley with few whole-genome duplication events. Most HvEXPAs mainly expressed in embryonic and root tissues. HvEXPBs and HvEXLAs showed different expression patterns in 16 tissues during different developmental stages. In response to water deficit, expansins in wild barley were more sensitive than that in cultivated barley; the expressions of HvEXPB5 and HvEXPB6 were significantly induced in wild barley under drought stress. Our study provides a comprehensive and systematic analysis of the barley expansin genes in genome-wide level. This information will lay a solid foundation for further functional exploration of expansin genes in plant development and drought stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P (1999) Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. Plant Cell 11:2203–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinform 10:421

    Article  CAS  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Che J, Yamaji N, Shen RF, Ma JF (2016) An Al-inducible expansin gene, OsEXPA10 is involved in root cell elongation of rice. Plant J 88:132–142

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Bradford KJ (2000) Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiol 124:1265–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho HT, Cosgrove DJ (2000) Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:9783–9788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho HT, Cosgrove DJ (2002) Regulation of root hair initiation and expansin gene expression in Arabidopsis. Plant Cell 14:3237–3253

    Article  CAS  Google Scholar 

  • Cosgrove DJ (1997) Relaxation in a high-stress environment: the molecular bases of extensible cell walls and cell enlargement. Plant Cell 9:1031–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321–326

    Article  CAS  PubMed  Google Scholar 

  • Dal Santo S, Vannozzi A, Tornielli GB, Fasoli M, Venturini L, Pezzotti M, Zenoni S (2013) Genome-wide analysis of the expansin gene superfamily reveals grapevine-specific structural and functional characteristics. PLoS ONE 8:e62206

    Article  CAS  Google Scholar 

  • Ding AM, Marowa P, Kong YZ (2016) Genome-wide identification of the expansin gene family in tobacco (Nicotiana tabacum). Mol Genet Genomics 291:1891–1907

    Article  CAS  PubMed  Google Scholar 

  • Ellis RP, Forster BP, Robinson D, Handley LL, Gordon DC, Russell JR, Powell W (2000) Wild barley: a source of genes for crop improvement in the 21st century? J Exp Bot 51:9–17

    Article  CAS  PubMed  Google Scholar 

  • Fu MM, Liu C, Wu FB (2019) Genome-wide identification, characterization and expression analysis of xyloglucan endotransglucosylase/hydrolase genes family in Barley (Hordeum vulgare). Molecules 24:1935

    Article  CAS  PubMed Central  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Guo W, Zhao J, Li X, Qin L, Yan X, Liao H (2011) A soybean beta-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses. Plant J 66:541–552

    Article  CAS  PubMed  Google Scholar 

  • Han YY, Li AX, Li F, Zhao MR, Wang W (2012) Characterization of a wheat (Triticum aestivum L.) expansin gene, TaEXPB23, involved in the abiotic stress response and phytohormone regulation. Plant Physiol Biochem 54:49–58

    Article  CAS  Google Scholar 

  • Han YY, Chen YH, Yin SH, Zhang M, Wang W (2015) Over-expression of TaEXPB23, a wheat expansin gene, improves oxidative stress tolerance in transgenic tobacco plants. J Plant Physiol 173:62–71

    Article  CAS  PubMed  Google Scholar 

  • Han ZS, Liu YL, Deng X, Liu DM, Liu Y, Hu YK, Yan YM (2019) Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.). BMC Genomics 20:1–19

    Article  Google Scholar 

  • Harada T, Torii Y, Morita S, Onodera R, Hara Y, Yokoyama R, Nishitani K, Satoh S (2011) Cloning, characterization, and expression of xyloglucan endotransglucosylase/hydrolase and expansin genes associated with petal growth and development during carnation flower opening. J Exp Bot 62:815–823

    Article  CAS  Google Scholar 

  • He XY, Zeng JB, Cao FB, Ahmed IM, Zhang GP, Vincze E, Wu FB (2015) HvEXPB7, a novel beta-expansin gene revealed by the root hair transcriptome of Tibetan wild barley, improves root hair growth under drought stress. J Exp Bot 66:7405–7419

    Article  PubMed Central  CAS  Google Scholar 

  • Hou L, Zhang ZY, Dou SH, Zhang YD, Pang XM, Li YY (2019) Genome-wide identification, characterization, and expression analysis of the expansin gene family in Chinese jujube (Ziziphus jujuba Mill.). Planta 249:815–829

    Article  CAS  PubMed  Google Scholar 

  • International Barley Genome Sequencing, Mayer C, Waugh KF, Brown R, Schulman JW, Langridge A, Platzer P, Fincher M, Muehlbauer GB, Sato GJ, Close K, Wise TJ, Stein N (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Article  CAS  Google Scholar 

  • Kende H, Bradford KJ, Brummell DA, Cho HT, Cosgrove DJ, Fleming AJ, Gehring C, Lee Y, McQueen-Mason S, Rose JKC, Voesenek LACJ (2004) Nomenclature for members of the expansin superfamily of genes and proteins. Plant Mol Biol 55:311–314

    Article  Google Scholar 

  • Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14:1–3

    Article  Google Scholar 

  • Kreszies T, Eggels S, Kreszies V, Osthoff A, Shellakkutti N, Baldauf JA, Zeisler-Diehl VV, Hochholdinger F, Ranathunge K, Schreiber L (2019a) Seminal roots of wild and cultivated barley differentially respond to osmotic stress in gene expression, suberization, and hydraulic conductivity. Plant Cell Environ 43:344

    Article  PubMed  CAS  Google Scholar 

  • Kreszies T, Shellakkutti N, Osthoff A, Yu P, Baldauf JA, Zeisler-Diehl VV, Ranathunge K, Hochholdinger F, Schreiber L (2019b) Osmotic stress enhances suberization of apoplastic barriers in barley seminal roots: analysis of chemical, transcriptomic and physiological responses. New Phytol 221:180–194

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy P, Hong JK, Kim JA, Jeong M, Lee YH, Lee SI (2015) Genome-wide analysis of the expansin gene superfamily reveals Brassica rapa-specific evolutionary dynamics upon whole genome triplication. Mol Genet Genomics 290:521–530

    Article  CAS  Google Scholar 

  • Kwasniewski M, Szarejko I (2006) Molecular cloning and characterization of beta-expansin gene related to root hair formation in barley. Plant Physiol 141:1149–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Xing SC, Guo QF, Zhao MR, Zhang J, Gao Q, Wang GP, Wang W (2011) Drought tolerance through over-expression of the expansin gene TaEXPB23 in transgenic tobacco. J Plant Physiol 168:960–966

    Article  CAS  PubMed  Google Scholar 

  • Li XX, Zhao J, Tan ZY, Zeng RS, Liao H (2015) GmEXPB2, a cell wall beta-expansin, affects soybean nodulation through modifying root architecture and promoting nodule formation and development. Plant Physiol 169:2640–2653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Wang W, Gao J, Yin K, Wang R, Wang C, Petersen M, Mundy J, Qiu JL (2016) MYB75 phosphorylation by MPK4 is required for light-induced anthocyanin accumulation in Arabidopsis. Plant Cell 28:2866–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin C, Choi HS, Cho HT (2011) Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis. Mol Cells 31:393–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardi M (2012) The barley expansin family

  • Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang XQ, Zhang Q, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Simkova H, Stankova H, Vrana J, Chan S, Munoz-Amatriain M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao S, Chapman B, Dai F, Han Y, Li H, Li X, Lin C, McCooke JK, Tan C, Wang P, Wang S, Yin S, Zhou G, Poland JA, Bellgard MI, Borisjuk L, Houben A, Dolezel J, Ayling S, Lonardi S, Kersey P, Langridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang G, Braumann I, Spannagl M, Li C, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544:427–433

    Article  CAS  PubMed  Google Scholar 

  • Mcqueenmason S, Durachko DM, Cosgrove DJ (1992) 2 endogenous proteins that induce cell-wall extension in plants. Plant Cell 4:1425–1433

    CAS  Google Scholar 

  • Moore RC, Purugganan MD (2003) The early stages of duplicate gene evolution. Proc Natl Acad Sci USA 100:15682–15687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng LN, Xu Y, Wang X, Feng X, Zhao Q, Feng S, Zhao Z, Hu B, Li F (2019) Overexpression of paralogues of the wheat expansin gene TaEXPA8 improves low-temperature tolerance in Arabidopsis. Plant Biol (Stuttg) 21:1119

    Article  CAS  Google Scholar 

  • Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A (2001) Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc Natl Acad Sci USA 98:11812–11817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakrishna P, Duarte PR, Rance GA, Schubert M, Vordermaier V, Vu LD, Murphy E, Barro AV, Swarup K, Moirangthem K, Jorgensen B, van de Cotte B, Goh T, Lin ZF, Voss U, Beeckman T, Bennett MJ, Gevaert K, Maizel A, De Smet I (2019) EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. Proc Natl Acad Sci USA 116:8597–8602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren YQ, Chen YH, An J, Zhao ZX, Zhang GQ, Wang Y, Wang W (2018) Wheat expansin gene TaEXPA2 is involved in conferring plant tolerance to Cd toxicity. Plant Sci 270:245–256

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Gao Y, Wang J, Yang L, Song R, Li X, Shi J (2011) Overexpression of two cambium-abundant Chinese fir (Cunninghamia lanceolata) alpha-expansin genes ClEXPA1 and ClEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls. Plant Biotechnol J 9:486–502

    Article  CAS  Google Scholar 

  • Wang Y, Tang H, Debarry JD, Tan X, Li J, Wang X, Lee TH, Jin H, Marler B, Guo H, Kissinger JC, Paterson AH (2012) MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res 40:e49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ (2006) Crystal structure and activities of EXPB1 (Zea m 1), a beta-expansin and group-1 pollen allergen from maize. Proc Natl Acad Sci USA 103:14664–14671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang XQ, Wei PC, Xiong YM, Yang Y, Chen J, Wang XC (2011) Overexpression of the Arabidopsis alpha-expansin gene AtEXPA1 accelerates stomatal opening by decreasing the volumetric elastic modulus. Plant Cell Rep 30:27–36

    Article  CAS  Google Scholar 

  • Zhang H, Ding YN, Zhi JK, Li XY, Liu HB, Xu JC (2018) Over-expression of the poplar expansin gene PtoEXPA12 in tobacco plants enhanced cadmium accumulation. Int J Biol Macromol 116:676–682

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Liu HB, Yang RX, Xu X, Liu X, Xu JC (2019) Over-expression of PttEXPA8 gene showed various resistances to diverse stresses. Int J Biol Macromol 130:50–57

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Xie J, Liao H, Wang X (2014) Overexpression of beta-expansin gene GmEXPB2 improves phosphorus efficiency in soybean. Physiol Plant 150:194–204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, MF and CL; formal analysis, CL; writing—original draft preparation, MF; writing—review and editing, CW; supervision, FG. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Manman Fu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 524.7 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Fu, M., Guo, F. et al. Genome-wide identification of expansin gene family in barley and drought-related expansins identification based on RNA-seq. Genetica 149, 283–297 (2021). https://doi.org/10.1007/s10709-021-00136-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-021-00136-4

Keywords

Navigation