Abstract
Cytogenetic data showed a variation in diploid chromosome number in the genus Hyphessobrycon ranging from 2n = 46 to 52, and studies involving repetitive DNA sequences are scarce in representatives of this genus. The purpose of this paper was the chromosomal mapping of repetitive sequences (rDNA, histone genes, U snDNA and microsatellites) and investigation of the amplification of 5S rDNA clusters in the Hyphessobrycon eques genome. Two H. eques populations displayed 2n = 52 chromosomes, with the acrocentric pair No. 24 bearing Ag-NORs corresponding with CMA3+/DAPI−. FISH with a 18S rDNA probe identified the NORs on the short (p) arms of the acrocentric pairs Nos. 22 and 24. The 5S rDNA probe visualized signals on almost all chromosomes in genomes of individuals from both populations (40 signals); FISH with H3 histone probe identified two chromosome pairs, with the pericentromeric location of signals; FISH with a U2 snDNA probe identified one chromosome pair bearing signals, on the interstitial chromosomal region. The mononucleotide (A), dinucleotide (CA) and tetranucleotide (GATA) repeats were observed on the centromeric/pericentromeric and/or terminal positions of all chromosomes, while the trinucleotide (CAG) repeat showed signals on few chromosomes. Molecular analysis of 5S rDNA and non-transcribed spacers (NTS) showed microsatellites (GATA and A repeats) and a fragment of retrotransposon (SINE3/5S-Sauria) inside the sequences. This study expanded the available cytogenetic data for H. eques and demonstrated to the dispersion of the 5S rDNA sequences on almost all chromosomes.
Similar content being viewed by others
References
Amemiya CT, Gold JR (1986) Chromomycin A3 stains nucleolus organizer regions of fish chromosomes. Copeia 1:226–231. https://doi.org/10.2307/1444915
Bueno D, Palacios-Gimenez OM, Cabral-de-Mello DC (2013) Chromosomal mapping of repetitive DNAs in Abracris flavolineata reveal possible ancestry for the B chromosome and surprisingly H3 histone spreading. PLoS ONE 8:e66532. https://doi.org/10.1371/journal.pone.0066532
Cabral-de-Mello DC, Moura RC, Martins C (2010) Chromosomal mapping of repetitive DNAs in the beetle Dichotomius geminatus provides the first evidence for an association of 5S rRNA and histone H3 genes in insects, and repetitive DNA similarity between the B chromosome and A complement. Heredity 104(4):393–400. https://doi.org/10.1038/hdy.2009.126
Carvalho ML, Oliveira C, Foresti F (2002) Cytogenetics analysis of five species of the subfamily Tetragonopterinae (Teleostei, Characiformes, Characidae). Caryologia 55:181–188. https://doi.org/10.1080/00087114.2002.10589275
Castro-Paz FP, Batista JdS, Porto JIR (2014) DNA barcodes of Rosy Tetras and allied species (Characiformes: Characidae: Hyphessobrycon) from the Brazilian Amazon basin. PLoS ONE 9(5):e98603. https://doi.org/10.1371/journal.pone.0098603
Centofante L, Bertollo LAC, Miyazawa CS, Moreira-Filho O (2003) Chromosomal differentiation among allopatric populations of Hyphessobrycon anisitsi (Pisces, Tetragonopterinae). Cytologia 68:283–288. https://doi.org/10.1508/cytologia.68.283
Cioffi MB, Bertollo LAC (2010) Initial steps in XY chromosome differentiation in Hoplias malabaricus and the origin of an X(1)X(2)Y sex chromosome system in this fish group. Heredity 105:554–561. https://doi.org/10.1038/hdy.2010.18
Cioffi MB, Martins C, Bertollo LAC (2010) Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol 10:217. https://doi.org/10.1186/1471-2148-10-271
Eickbush TH, Eickbush DG (2007) Finely orchestrated movements: evolution of the ribosomal RNA genes. Genetics 175:477–485. https://doi.org/10.1534/genetics.107.071399
Eschmeyer WN, Fong JD (2019) Species of fishes by family/subfamily. http://research.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp. Accessed 18 Mar 2019
Fernandes CA, Martins-Santos IC (2004) Cytogenetic studies in two populations of the Astyanax altiparanae (Pisces, Characiformes). Hereditas 141:328–332. https://doi.org/10.1111/j.1601-5223.2004.01832.x
Fernandes CA, Alves DS, Guterres ZR, Martins-Santos IC (2015) Cytogenetic analysis of two locariid species (Teleostei, Siluriformes) from Iguatemi River (Parana River drainage) in Brazil. Comp Cytogenet 9(1):67–78. https://doi.org/10.3897/CompCytogen.v9i1.8804
Fernandes CA, Paiz LM, Baumgärtner L, Margarido VP, Vieira MMR (2017) Comparative cytogenetics of the black ghost knifefish (Gymnotiformes: Apteronotidae): evidence of chromosomal fusion and pericentric inversions in karyotypes of two Apteronotus species. Zebrafish 14:471–476. https://doi.org/10.1089/zeb.2017.1432
Foresti F, Almeida-Toledo LF, Toledo-Filho SA (1981) Polymorphic nature of nucleolus organizer regions in fishes. Cytogenet Cell Genet 31:137–144. https://doi.org/10.1159/000131639
Froese R, Pauly D (2019) FishBase. World Wide Web electronic publication. https://www.fishbase.in/search.php. Accessed 18 Mar 2019
Galetti PM, Mestriner CA, Monaco P, Rasch EM (1995) Post-zygotic modifications and intra- and inter-individual nucleolar organizer region variations in fish: report of a case involving Leporinus friderici. Chromosome Res 3:285–290. https://doi.org/10.1007/BF00713066
Glugoski L, Giuliano-Caetano L, Moreira-Filho O, Vicari MR, Nogaroto V (2018) Co-located hAT transposable element and 5S rDNA in an interstitial telomeric sequence suggest the formation of robertsonian fusion in armored catfish. Gene 650:49–54. https://doi.org/10.1016/j.gene.2018.01.099
Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
Howell WM, Black DA (1980) Controlled silver-staining of nucleolus organizer regions with the protective colloidal developer: a 1-step method. Experientia 36(8):1014–1015. https://doi.org/10.1007/BF01953855
Javonillo R, Malabarba LR, Weitzman SH, Burns JR (2010) Relationships among major lineages of characid fishes (Teleostei: Ostariophysi: Characiformes), based on molecular sequence data. Mol Phylogenet Evol 54(2):498–511. https://doi.org/10.1016/j.ympev.2009.08.026
Kohany O, Gentles AJ, Hankus L, Jurka J (2006) Annotation, submission and screening of repetitive elements in Repbase: RepbaseSubmitter and Censor. BMC Bioinform 7:474. https://doi.org/10.1186/1471-2105-7-474
Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x
Lima FCT, Malabarba LR, Buckup PA et al (2003) General Incertae sedis in characidae. In: Reis RE, Kullander SO, Ferraris CJ (eds) Checklist of the freshwater fishes of South and Central America, 1st edn. Edipucrs, Porto Alegre, pp 106–168
Margarido VP, Moreira-Filho O (2008) Karyotypic differentiation through chromosome fusion and number reduction in Imparfinis hollandi (Ostariophysi, Heptapteridae). Genet Mol Biol 31:235–238. https://doi.org/10.1590/S1415-47572008000200012
Martinez ERM, Alves AL, Silveira SM, Foresti F, Oliveira C (2012) Cytogenetic analysis in the incertae sedis species Astyanax altiparanae Garutti and Britzki, 2000 and Hyphessobrycon eques Steindachner, 1882 (Characiformes, Characidae) from the upper Paraná river basin. Comp Cytogenet 6(1):41–51. https://doi.org/10.3897/compcytogen.v6i1.1873
Martins C, Ferreira IA, Oliveira C, Foresti F, Galetti PM (2006) A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica 127:133–141
Mayr B, Rab P, Kalat M (1985) Localisation of NORs and counterstain-enhanced fluorescence studies in Perca fluviatilis (Pisces, Percidae). Genetica 67:51–56. https://doi.org/10.1007/BF02424460
Mendes MM, Rosa R, Giuliano-Caetano L, Dias AL (2011) Karyotype diversity of four species of the incertae sedis group (Characidae) from different hydrographic basins: analysis of Ag-NORs, CMA3 and 18S rDNA. Genet Mol Res 10(4):3596–3608. https://doi.org/10.4238/2011.November.22.5
Merlo MA, Cross I, Palazón JL, Úbeda-Manzanaro M, Sarasquete C, Rebordinos L (2012) Evidence for 5S rDNA horizontal transfer in the toadfish Halobatrachus didactylus (Schneider, 1801) based on the analysis of three multigene families. BMC Evol Biol 12(1):201. https://doi.org/10.1186/1471-2148-12-201
Merlo MA, Cross I, Manchado M, Cárdenas S, Rebordinos L (2013) The 5S rDNA high dynamism in Diplodus sargus is a transposon-mediated mechanism. Comparison with other multigene families and sparidae species. J Mol Evol 76:83–97. https://doi.org/10.1007/s00239-013-9541-8
Mestriner CA, Galetti PM, Valentini SR, Ruiz IRG, Abel LDS, Moreira-Filho O, Camacho JP (2000) Structural and functional evidence that a B chromosome in the characid fish Astyanax scabripinnis is an isochromosome. Heredity 85:1–9. https://doi.org/10.1046/j.1365-2540.2000.00702.x
Milani D, Cabral-de-Mello DC (2014) Microsatellite organization in the grasshopper Abracris flavolineata (Orthoptera: Acrididae) revealed by FISH mapping: remarkable spreading in the A and B chromosomes. PLoS ONE 9:e97956. https://doi.org/10.1371/journal.pone.0097956
Mirande JM (2010) Phylogeny of the family characidae (Teleostei: Characiformes): from characters to taxonomy. Neotrop Ichthyol 8(3):385–568. https://doi.org/10.1590/S1679-62252010000300001
Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152. https://doi.org/10.1146/annurev.genet.39.073003.112240
Nakajima RT, Cabral-de-Mello DC, Valente GT, Venere PC, Martins C (2012) Evolutionary dynamics of rRNA gene clusters in cichlid fish. BMC Evol Biol 12:198. https://doi.org/10.1186/1471-2148-12-198
Oliveira C, Avelino GS, Abe KT, Mariguela TC, Benine RC, Ortí G, Vari RP, e Castro RMC (2011) Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evol Biol 11(1):275. https://doi.org/10.1186/1471-2148-11-275
Pendás AM, Morán P, Freije JP, García-Vázquez E (1994) Chromosomal location and nucleotide sequence of two tandem repeats of the Atlantic salmon 5S rDNA. Cytogenet Cell Genet 67:31–36. https://doi.org/10.1159/000133792
Pinhal D, Yoshimura TS, Araki CS, Martins C (2011) The 5S rDNA family evolves through concerted and birth-and-death evolution in fish genomes: an example from freshwater stingrays. BMC Evol Biol 11:151. https://doi.org/10.1186/1471-2148-11-151
Pinkel D, Straume T, Gray JW (1986) Citogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83(9):2934–2938. https://doi.org/10.1073/pnas.83.9.2934
Piscor D, Parise-Maltempi PP (2015) First description of B chromosomes in the Hyphessobrycon (Characiformes, Characidae) genus: a hypothesis for the extra element of Hyphessobrycon eques Steindachner, 1882. Comp Cytogenet 9(3):325–333. https://doi.org/10.3897/CompCytogen.v9i3.5224
Piscor D, Parise-Maltempi PP (2016) Chromosomal mapping of H3 histone and 5S rRNA genes in eight species of Astyanax (Pisces, Characiformes) with different diploid numbers: syntenic conservation of repetitive genes. Genome 59(3):67–172. https://doi.org/10.1139/gen-2015-0112
Piscor D, Alves AL, Parise-Maltempi PP (2015) Chromosomal microstructure diversity in three Astyanax (Characiformes, Characidae) species: comparative analysis of the chromosomal locations of the 18S and 5S rDNAs. Zebrafish 12(1):81–90. https://doi.org/10.1089/zeb.2014.1036
Piscor D, Centofante L, Parise-Maltempi PP (2016) Highly similar morphologies between chromosomes bearing U2 snRNA gene clusters in the group Astyanax Baird and Girard, 1854 (Characiformes, Characidae): an evolutionary approach in species with 2n = 36, 46, 48, and 50. Zebrafish 13(6):565–570. https://doi.org/10.1089/zeb.2016.1292
Piscor D, Fernandes CA, Parise-Maltempi PP (2018) Conserved number of U2 snDNA sites in Piabina argentea, Piabarchus stramineus and two Bryconamericus species (Characidae, Stevardiinae). Neotrop Ichthyol 16(1):e170066. https://doi.org/10.1590/1982-0224-20170066
Poltronieri J, Marquioni V, Bertollo LAC, Kejnovsky E, Molina WF, Liehr T, Cioffi MB (2014) Comparative chromosomal mapping of microsatellites in Leporinus species (Characiformes, Anostomidae): unequal accumulation on the W chromosomes. Cytogenet Genome Res 142:40–45. https://doi.org/10.1159/000355908
Raskina O, Belyayev A, Nevo E (2004) Quantum speciation in Aegilops: molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc Natl Acad Sci USA 101(41):14818–14823. https://doi.org/10.1073/pnas.0405817101
Raskina O, Barber JC, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 120:351–357. https://doi.org/10.1159/000121084
Rebordinos L, Cross I, Merlo A (2013) High evolutionary dynamism in 5S rDNA of fish: state of the art. Cytogenet Genome Res 141:103–113. https://doi.org/10.1159/000354871
Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
Sember A, Bohlen J, Šlechtová V, Altmanová M, Symonová R, Ráb P (2015) Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol Biol 15:251. https://doi.org/10.1186/s12862-015-0532-9
Sember A, Bohlen J, Šlechtová V, Altmanová M, Pelikánová Š, Ráb P (2018) Dynamics of tandemly repeated DNA sequences during evolution of diploid and tetraploid botiid loaches (Teleostei: Cobitoidea: Botiidae). PLoS ONE 13(3):e0195054. https://doi.org/10.1371/journal.pone.0195054
Sheel JJ (1973) Fish chromosome and their evolution. Internal Report of Danmarks Akuarium, Charlottenlund
Silva M, Barbosa P, Artoni RF, Feldberg E (2016) Evolutionary dynamics of 5S rDNA and recurrent association of transposable elements in electric fish of the family Gymnotidae (Gymnotiformes): the case of Gymnotus mamiraua. Cytogenet Genome Res 149:297–303. https://doi.org/10.1159/000449431
Symonová R, Majtánová Z, Sember A, Staaks GB, Bohlen J, Freyhof J, Rábová M, Ráb P (2013) Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol Biol 13:42. https://doi.org/10.1186/1471-2148-13-42
Symonová R, Ocalewicz K, Kirtiklis L, Delmastro GB, Pelikánová Š, Garcia S, Kovařík A (2017) Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.). BMC Genomics 18:391. https://doi.org/10.1186/s12864-017-3774-7
Soto M, Castro JP, Walker LI, Malabarba LR, Santos MH, Almeida MC, Moreira-Filho O, Artoni RF (2018) Evolution of trans-Andean endemic fishes of the genus Cheirodon (Teleostei: Characidae) are associated with chromosomal rearrangements. Rev Chil Hist Nat. https://doi.org/10.1186/s40693-018-0078-5
Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75(1):304–306. https://doi.org/10.1016/0014-4827(72)90558-7
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. https://doi.org/10.1007/978-1-4020-6754-9_3188
White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky JJ, White TJ (eds) PCR Protocols, a guide to methods and applications. Academic Press, San Diego, pp 315–322
Yano CF, Bertollo LAC, Ezaz T, Trifonov V, Sember A, Liehr T, Cioffi MB (2016) Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae). Heredity 118:276–283. https://doi.org/10.1038/hdy.2016.83
Yano CF, Bertollo LAC, Rebordinos L, Merlo MA, Liehr T, Portela-Bens S, Cioffi MB (2017) Evolutionary dynamics of rDNAs and U2 small nuclear DNAs in Triportheus (Characiformes, Triportheidae): high variability and particular syntenic organization. Zebrafish 14(2):146–154. https://doi.org/10.1089/zeb.2016.1351
Piscor D, Fernandes CA, Parise-Maltempi PP, (2018) Conserved number of U2 snDNA sites in Piabina argentea, Piabarchus stramineus and two Bryconamericus species (Characidae, Stevardiinae). Neotrop Ichthyol 16(1):e170066. https://doi.org/10.1590/1982-0224-20170066
Acknowledgements
This study was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). The authors are grateful to Dr. Diogo Cavalcanti Cabral-de-Mello for the microsatellite DNA probes.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Piscor, D., Paiz, L.M., Baumgärtner, L. et al. Chromosomal mapping of repetitive sequences in Hyphessobrycon eques (Characiformes, Characidae): a special case of the spreading of 5S rDNA clusters in a genome. Genetica 148, 25–32 (2020). https://doi.org/10.1007/s10709-020-00086-3
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10709-020-00086-3