Skip to main content
Log in

Identification and expression profiling of selected MADS-box family genes in Dendrobium officinale

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Dendrobium officinale, a herb with highly medicinal and ornamental value, is widely distributed in China. MADS-box genes encode transcription factors that regulate various growth and developmental processes in plants, particular in flowering. However, the MADS-box genes in D. officinale are largely unknown. In our study, expression profiling analyses of selected MADS-box genes in D. officinale were performed. In total, 16 DnMADS-box genes with full-length ORF were identified and named according to their phylogenetic relationships with model plants. The transient expression of eight selected MADS-box genes in the epidermal cells of tobacco leaves showed that these DnMADS-box proteins localized to the nucleus. Tissue-specific expression analysis pointed out eight flower-specific expressed MADS-box genes in D. officinale. Furthermore, expression patterns of DnMADS-box genes were investigated during the floral transition process. DnMADS3, DnMADS8 and DnMADS22 were significantly up-regulated in the reproductive phase compared with the vegetative phase, suggesting putative roles of these DnMADS-box genes in flowering. Our data showed that the expressions of MADS-box genes in D. officinale were controlled by diverse exogenous phytohormones. Together, these findings will facilitate further studies of MADS-box genes in Orchids and broaden our understanding of the genetics of flowering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acri-Nunes-Miranda R, Mondragon-Palomino M (2014) Expression of paralogous SEP-, FUL-, AG- and STK-like MADS-box genes in wild-type and peloric Phalaenopsis flowers. Front Plant Sci 5:76

    Article  PubMed  PubMed Central  Google Scholar 

  • Aloni R, Ullrich CI (2006) Role of auxin in regulating Arabidopsis flower development. Planta 223:315–328

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J Cell Mol Biol 24:457–466

    Article  CAS  Google Scholar 

  • Chen YY, Lee PF, Hsiao YY, Wu WL, Pan ZJ, Lee YI, Liu KW, Chen LJ, Liu ZJ, Tsai WC (2012) C- and D-class MADS-box genes from Phalaenopsis equestris (Orchidaceae) display functions in gynostemium and ovule development. Plant Cell Physiol 53:1053–1067

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Shen Q, Lin R, Zhao Z, Shen C, Sun C (2017) De novo transcriptome analysis in Dendrobium and identification of critical genes associated with flowering. Plant Physiol Biochem 119:319–327

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Chen W, Zhou Z, Liu J, Wang H (2013) Functional characterization of a novel tropinone reductase-like gene in Dendrobium nobile Lindl. J Plant Physiol 170:958–964

    Article  CAS  PubMed  Google Scholar 

  • Diethelm R, Keller ER, Bangerth F (1988) Auxins, ABA and gibberellin-like activity in abscising and non-abscising flowers and pods of Vicia faba L. Plant Growth Regul 7:75–90

    Article  CAS  Google Scholar 

  • Ding L, Wang Y, Yu H (2013) Overexpression of DOSOC1, an ortholog of Arabidopsis SOC1, promotes flowering in the orchid Dendrobium Chao Parya Smile. Plant Cell Physiol 54:595–608

    Article  CAS  PubMed  Google Scholar 

  • Duan W, Song X, Liu T, Huang Z, Ren J, Hou X, Li Y (2015) Genome-wide analysis of the MADS-box gene family in Brassica rapa (Chinese cabbage). Mol Genet Genomics 290:239–255

    Article  CAS  PubMed  Google Scholar 

  • Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant Cell 15:2603–2611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng S, Yue R, Tao S, Yang Y, Zhang L, Xu M, Wang H, Shen C (2015) Genome-wide identification, expression analysis of auxin-responsive GH3 family genes in maize (Zea mays L.) under abiotic stresses. J Integr Plant Biol 57:783–795

    Article  CAS  PubMed  Google Scholar 

  • Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560

    Article  CAS  PubMed  Google Scholar 

  • Guo B, Hexige S, Zhang T, Pittman JK, Chen D, Ming F (2007) Cloning and characterization of a PI-like MADS-box gene in Phalaenopsis orchid. J Biochem Mol Biol 40:845–852

    CAS  PubMed  Google Scholar 

  • Guo B, Zhang T, Shi J, Chen D, Shen D, Ming F (2008) Cloning and characterization of a novel PI-like MADS-box gene in Phalaenopsis orchid. DNA Seq 19:332–339

    Article  CAS  PubMed  Google Scholar 

  • Hao J, Guo H, Shi X, Wang Y, Wan Q, Song Y, Zhang L, Dong M, Shen C (2017) Comparative proteomic analyses of two taxus species (Taxus × media and Taxus mairei) reveals variations in the metabolisms associated with paclitaxel and other metabolites. Plant Cell Physiol. https://doi.org/10.1093/pcp/pcx128

    Article  PubMed  Google Scholar 

  • He C, Si C, Teixeira da Silva JA, Li M, Duan J (2019) Genome-wide identification and classification of MIKC-type MADS-box genes in Streptophyte lineages and expression analyses to reveal their role in seed germination of orchid. BMC Plant Biol 19:223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Y, Jackson S (2015) Floral induction and flower formation—the role and potential applications of miRNAs. Plant Biotechnol J 13:282–292

    Article  CAS  PubMed  Google Scholar 

  • Howe EA, Sinha R, Schlauch D, Quackenbush J (2011) RNA-Seq analysis in MeV. Bioinformatics 27:3209–3210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu JY, Zhou Y, He F, Dong X, Liu LY, Coupland G, Turck F, de Meaux J (2014) miR824-Regulated AGAMOUS-LIKE16 contributes to flowering time repression in Arabidopsis. Plant Cell 26:2024–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Y, Xiang L, Zhang Q, Hu F, Sun C (2016) Research progress on MADS-box gene regulation in the flower development of orchid. Mol Plant Breed 14:886–895

    CAS  Google Scholar 

  • Huang F, Chi Y, Gai J, Yu D (2009) Identification of transcription factors predominantly expressed in soybean flowers and characterization of GmSEP1 encoding a SEPALLATA1-like protein. Gene 438:40–48

    Article  CAS  PubMed  Google Scholar 

  • Jaudal M, Zhang L, Che C, Putterill J (2015) Three Medicago MtFUL genes have distinct and overlapping expression patterns during vegetative and reproductive development and 35S:MtFULb accelerates flowering and causes a terminal flower phenotype in Arabidopsis. Front Genet 6:50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jofuku KD, den Boer BG, Van Montagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SC, Kang H (2002) Characterization of potato vegetative MADS-Box gene, POTM1-1, in response to hormone applications. J Plant Biol 45:196–200

    Article  Google Scholar 

  • Kim S, Koh J, Yoo MJ, Kong H, Hu Y, Ma H, Soltis PS, Soltis DE (2005) Expression of floral MADS-box genes in basal angiosperms: implications for the evolution of floral regulators. Plant J 43:724–744

    Article  CAS  PubMed  Google Scholar 

  • Lee JS (2011) AGAMOUS-LIKE 6 is a floral promoter that negatively regulates the FLC/MAF clade genes and positively regulates FT in Arabidopsis. Plant J Cell Mol Biol 65:62–76

    Article  CAS  Google Scholar 

  • Li C, Wang Y, Xu L, Nie S, Chen Y, Liang D, Sun X, Karanja BK, Luo X, Liu L (2016) Genome-wide characterization of the MADS-Box gene family in radish (Raphanus sativus L.) and assessment of its roles in flowering and floral organogenesis. Front Plant Sci 7:1390

    PubMed  PubMed Central  Google Scholar 

  • Lin CS, Hsu CT, Liao DC, Chang WJ, Chou ML, Huang YT, Chen JJ, Ko SS, Chan MT, Shih MC (2016) Transcriptome-wide analysis of the MADS-box gene family in the orchid Erycina pusilla. Plant Biotechnol J 14:284–298

    Article  CAS  PubMed  Google Scholar 

  • Liu XR, Pan T, Liang WQ, Gao L, Wang XJ, Li HQ, Liang S (2016) Overexpression of an orchid (Dendrobium nobile) SOC1/TM3-Like ortholog, DnAGL19, in Arabidopsis regulates HOS1-FT expression. Front Plant Sci 7:99

    PubMed  PubMed Central  Google Scholar 

  • Lu JJ, Suo NN, Hu X, Wang S, Liu JJ, Wang HZ (2012) Development and characterization of 110 novel EST-SSR markers for Dendrobium officinale (Orchidaceae). Am J Bot 99:415–420

    Article  Google Scholar 

  • Lu J, Liu Y, Xu J, Mei Z, Shi Y, Liu P, He J, Wang X, Meng Y, Feng S, Shen C, Wang H (2018) High-density genetic map construction and stem total polysaccharide content-related QTL exploration for Chinese endemic Dendrobium (Orchidaceae). Front Plant Sci 9:398

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma H, Yanofsky MF, Meyerowitz EM (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev 5:484–495

    Article  CAS  PubMed  Google Scholar 

  • Mao WT, Hsu HF, Hsu WH, Li JY, Lee YI, Yang CH (2015) The C-terminal sequence and PI motif of the orchid (Oncidium Gower Ramsey) PISTILLATA (PI) ortholog determine its ability to bind AP3 orthologs and enter the nucleus to regulate downstream genes controlling petal and stamen formation. Plant Cell Physiol 56:2079–2099

    CAS  PubMed  Google Scholar 

  • Martínez C, Pons E, Prats G, León J (2004) Salicylic acid regulates flowering time and links defence responses and reproductive development. Plant J 37:209

    Article  CAS  PubMed  Google Scholar 

  • Meng Y, Yu D, Xue J, Lu J, Feng S, Shen C, Wang H (2016) A transcriptome-wide, organ-specific regulatory map of Dendrobium officinale, an important traditional Chinese orchid herb. Sci Rep 6:18864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondragón-Palomino M (2013) Perspectives on MADS-box expression during orchid flower evolution and development. Front Plant Sci 4:377

    PubMed  PubMed Central  Google Scholar 

  • Moon J, Suh SS, Lee H, Choi KR, Hong CB, Paek NC, Kim SG, Lee I (2003) The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35:613–623

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mushegian AR, Koonin EV (1996) Sequence analysis of eukaryotic developmental proteins: ancient and novel domains. Genetics 144:817–828

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nayar S, Sharma R, Tyagi AK, Kapoor S (2013) Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis. J Exp Bot 64:4239–4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2:186–195

    Article  CAS  PubMed  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203

    Article  CAS  PubMed  Google Scholar 

  • Purugganan MD, Suddith JI (1999) Molecular population genetics of floral homeotic loci. Departures from the equilibrium-neutral model at the APETALA3 and PISTILLATA genes of Arabidopsis thaliana. Genetics 151:839–848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin C, Chen W, Shen J, Cheng L, Akande F, Zhang K, Yuan C, Li C, Zhang P, Shi N, Cheng Q, Liu Y, Jackson S, Hong Y (2017) A virus-induced assay for functional dissection and analysis of monocot and dicot flowering time genes. Plant Physiol 174:875–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren D, Rao Y, Leng Y, Li Z, Xu Q, Wu L, Qiu Z, Xue D, Zeng D, Hu J, Zhang G, Zhu L, Gao Z, Chen G, Dong G, Guo L, Qian Q (2016) Regulatory role of OsMADS34 in the determination of glumes fate, grain yield, and quality in rice. Front Plant Sci 7:1853

    PubMed  PubMed Central  Google Scholar 

  • Salemme M, Sica M, Gaudio L, Aceto S (2011) Expression pattern of two paralogs of the PI/GLO -like locus during Orchis italica (Orchidaceae, Orchidinae) flower development. Dev Genes Evol 221:241

    Article  CAS  PubMed  Google Scholar 

  • Shen C, Guo H, Chen H, Shi Y, Meng Y, Lu J, Feng S, Wang H (2017) Identification and analysis of genes associated with the synthesis of bioactive constituents in Dendrobium officinale using RNA-Seq. Sci Rep 7:187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shu Y, Yu D, Wang D, Guo D, Guo C (2013) Genome-wide survey and expression analysis of the MADS-box gene family in soybean. Mol Biol Rep 40:3901–3911

    Article  CAS  PubMed  Google Scholar 

  • Skipper M, Johansen LB, Pedersen KB, Frederiksen S, Johansen BB (2006) Cloning and transcription analysis of an AGAMOUS- and SEEDSTICK ortholog in the orchid Dendrobium thyrsiflorum (Reichb. f.). Gene 366:266

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Xu Y, Ng KH, Ito T (2009) A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Genes Dev 23:1791–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Shen Y, Li A, Fu W (2014) Ectopic expression of Dendrobium EREB5 gene in Arabidopsis influences leaf morphology. In Vitro Cell Dev Biol 50:425–435

    Article  CAS  Google Scholar 

  • Tabata R, Ikezaki M, Fujibe T, Aida M, Tian CE, Ueno Y, Yamamoto KT, Machida Y, Nakamura K, Ishiguro S (2010) Arabidopsis auxin response factor6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes. Plant Cell Physiol 51:164–175

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor JL, Massiah A, Kennedy S, Hong Y, Jackson SD (2017) FLC expression is down-regulated by cold treatment in Diplotaxis tenuifolia (wild rocket), but flowering time is unaffected. J Plant Physiol 214:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409:469–471

    Article  CAS  PubMed  Google Scholar 

  • Tian Y, Yuan X, Jiang S, Cui B, Su J (2013) Molecular cloning and spatiotemporal expression of an APETALA1/FRUITFULL-like MADS-box gene from the orchid (Cymbidium faberi). Chin J Biotechnol 29:203

    CAS  Google Scholar 

  • Tsai WC, Kuoh CS, Chuang MH, Chen WH, Chen HH (2004) Four DEF-like MADS box genes displayed distinct floral morphogenetic roles in Phalaenopsis orchid. Plant Cell Physiol 45:831–844

    Article  CAS  PubMed  Google Scholar 

  • Valoroso MC, Censullo MC, Aceto S (2019) The MADS-box genes expressed in the inflorescence of Orchis italica (Orchidaceae). PLoS ONE 14:e0213185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandenbussche M, Theissen G, Van de Peer Y, Gerats T (2003) Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Res 31:4401–4409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voogd C, Wang T, Varkonyi-Gasic E (2015) Functional and expression analyses of kiwifruit SOC1-like genes suggest that they may not have a role in the transition to flowering but may affect the duration of dormancy. J Exp Bot 66:4699–4710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HZ, Hu B, Chen GP, Shi NN, Zhao Y, Yin QC, Liu JJ (2008) Application of Arabidopsis AGAMOUS second intron for the engineered ablation of flower development in transgenic tobacco. Plant Cell Rep 27:251–259

    Article  CAS  PubMed  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  CAS  PubMed  Google Scholar 

  • Wu JB, Zhang CL, Mao PP, Qian YS, Wang HZ (2014) First report of leaf spot caused by Nigrospora oryzae on Dendrobium candidum in China. Plant Dis 98:996

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Bian J, Liu S, Song H, Shi N, Tao Y, Wang H (2011) Flower-specific expression of Arabidopsis PCS1 driven by AGAMOUS second intron in tobacco decreases the fertility of transgenic plants. Mol Breed 27:337–346

    Article  CAS  Google Scholar 

  • Yu H, Goh CJ (2000) Identification and characterization of three orchid MADS-Box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol 123:1325–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu H, Ito T, Zhao Y, Peng J, Kumar P, Meyerowitz EM (2004) Floral homeotic genes are targets of gibberellin signaling in flower development. Proc Natl Acad Sci USA 101:7827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu C, Guo H, Zhang Y, Song Y, Pi E, Yu C, Zhang L, Dong M, Zheng B, Wang H, Shen C (2017) Identification of potential genes that contributed to the variation in the taxoid contents between two taxus species (Taxus media and Taxus mairei). Tree Physiol 37:1659–1671

    Article  CAS  PubMed  Google Scholar 

  • Zhang MZ, Ye D, Wang LL, Pang JL, Zhang YH, Zheng K, Bian HW, Han N, Pan JW, Wang JH, Zhu MY (2008) Overexpression of the cucumber LEAFY homolog CFL and hormone treatments alter flower development in gloxinia (Sinningia speciosa). Plant Mol Biol 67:419–427

    Article  CAS  PubMed  Google Scholar 

  • Zhang G-Q, Xu Q, Bian C, Tsai W-C, Yeh C-M, Liu K-W, Yoshida K, Zhang L-S, Chang S-B, Chen F, Shi Y, Su Y-Y, Zhang Y-Q, Chen L-J, Yin Y, Lin M, Huang H, Deng H, Wang Z-W, Zhu S-L, Zhao X, Deng C, Niu S-C, Huang J, Wang M, Liu G-H, Yang H-J, Xiao X-J, Hsiao Y-Y, Wu W-L, Chen Y-Y, Mitsuda N, Ohme-Takagi M, Luo Y-B, Van de Peer Y, Liu Z-J (2016a) The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Sci Rep 6:19029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Wu T, Liu S, Liu X, Jiang L, Wan J (2016b) Disruption of OsARF19 is critical for floral organ development and plant architecture in rice (Oryza sativa L.). Plant Mol Biol Rep 34:748–760

    Article  CAS  Google Scholar 

  • Zheng C, Halaly T, Acheampong AK, Takebayashi Y, Jikumaru Y, Kamiya Y, Or E (2015) Abscisic acid (ABA) regulates grape bud dormancy, and dormancy release stimuli may act through modification of ABA metabolism. J Exp Bot 66:1527–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of China (31801891), the Tree Breeding Project of Zhejiang Province, China (2016C02065), the Natural Science Foundation of Zhejiang Province, China (LQ17C150002), and the Open Research Subject of Key Laboratory of Plant Germplasm Enhancement of Specially Forestry of Central and South of Zhejiang Province (ZX201902).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: YC and QS; Performed the experiments: YC, PL, RL; Analyzed the data: RL; Drafted the manuscript: YC and CBS.

Corresponding author

Correspondence to Chongbo Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Shen, Q., Lyu, P. et al. Identification and expression profiling of selected MADS-box family genes in Dendrobium officinale. Genetica 147, 303–313 (2019). https://doi.org/10.1007/s10709-019-00071-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-019-00071-5

Keywords

Navigation