Inferring boundaries among fish species of the new world silversides (Atherinopsidae; genus Odontesthes): new evidences of incipient speciation between marine and brackish populations of Odontesthes argentinensis

Abstract

Species of new world silversides (Actinopterygii; Atherinopsidae; genus Odontesthes) possess economic relevance, biological interest and ecological importance. In the present paper we: (A) investigate the molecular diversity in marine species of Odontesthes from the South West Atlantic Ocean (SWAO), and analyse their interspecific relationships and divergence by means of DNA Barcoding, including its freshwater congeners, as well. (B) Explore the suitability of DNA Barcoding to analyse the diversity and distribution of haplotypes in Odontesthes argentinensis, the only well documented marine species from the SWAO that exhibit putative estuarine and marine populations. Molecular analysis revealed 100% of agreement between morphological identification and molecular identity. Odontesthes argentinensis, Odontesthes platensis, Odontesthes smitti, Odontesthes nigricans and Odontesthes incisa were assigned to five different barcode index numbers (BINs). Maximum-likelihood analysis showed that all marine species of Odontesthes clustered separately in a unique monophyletic phylogroup, comprising five well defined haplogroups, with genetic divergence between groups ranging from 2.75 to 7.11%. The genetic analysis including freshwater congeners showed that O. incisa clustered alone occupying a basal position. The Fst pairwise comparisons within O. argentinensis support the existence of three population groups: one conformed by Mar Chiquita Lagoon (MCh) specimens, and the others by Mar del Plata/Mar Chiquita coast and San Blas Bay coastal specimens, respectively. The AMOVA showed significant overall differentiation (Fst = 0.238; p = 0.00001) for the entire data set. The previous/present evidence is discussed, and strongly suggests that incipient speciation is occurring in O. argentinensis argentinean populations, and specimens from MCh would be considered at present as the leading candidate of a marine to freshwater incipient speciation event.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  2. Beheregaray LB, Sunnucks P (2001) Fine-scale genetic structure, estuarine colonization and incipient speciation in the marine silverside fish Odontesthes argentinensis. Mol Ecol 10:2849–2866

    Article  CAS  PubMed  Google Scholar 

  3. Bemvenuti MA (2000) Diferenciação geográfica do peixe-rei Odontesthes argentinensis (Atherinopsidae), no extremo sul do Brasil, através da morfometria multivariada. Atlántica 22:71–79

    Google Scholar 

  4. Bemvenuti MA (2002) Diferenciação morfológica das espécies de peixes-rei, Odontesthes Evermann & Kendall (Osteichthyes, Atherinopsidae) no extremo sul do Brasil: morfometria multivariada. Rev Bras Zool 19:251–287

    Article  Google Scholar 

  5. Bemvenuti MA (2006) Silversides in South Brazil: morphological and ecological aspects. Biocell 30:111–118

    CAS  PubMed  Google Scholar 

  6. Betancur-R R, Orti G, Stein AM, Marceniuk AP, Pyron A (2012) Apparent signal of competition limiting diversification after ecological transitions from marine to freshwater habitats. Ecol Lett 15:822–830

    Article  PubMed  Google Scholar 

  7. Betancur-R R, Broughton RE, Wiley EO et al (2013) The tree of life and a new classification of bony fishes. PLoS Curr. https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bloom DD, Weir JT, Piller KR, Lovejoy NR (2013) Do freshwater fishes diversify faster than marine fishes? A test using state-dependent diversification analyses and molecular phylogenetics of New World silversides (Atherinopsidae). Evolution 67:2040–2057

    Article  PubMed  Google Scholar 

  9. Bogan S, de los Reyes ML, Cenizo MM (2009) Primeros registros fósiles de pejerreyes (Telostei: Atheriniformes) en el Pleistoceno Medio de la provincia de Buenos Aires, Argentina. Rev Mus Argentino Cienc Nat 11(2):185–192

    Article  Google Scholar 

  10. Campanella D, Hughes LC, Unmack PJ, Bloom DD, Piller KR, Ortí G (2015) Multi-locus fossil-calibrated phylogeny of Atheriniformes (Teleostei, Ovalentaria). Mol Phylogenet Evol 86:8–23

    Article  PubMed  Google Scholar 

  11. Capurro LRA (1981) Características físicas del Atlántico Sudoccidental. In: Boltovskoy D (ed) Atlas de1 Zooplancton del Atlántico Sudoccidental y métodos de trabajo con el zooplancton marino. Publicaciones Especiales INIDEP, Mar de1 Plata, pp 219225

  12. Cardiel J (1748) Diario del Viaje y Misión a1 Río del Sauce (Río Negro) por Fines de Marzo de 1748. Inst Invest Geogr Buenos Aires, 1930, p 278

  13. Cousseau MB (2010) Ictiología. Aspectos Fundamentales. La vida de los peces sudamericanos. EUDEM, Mar del Plata

    Google Scholar 

  14. Cousseau MB, Perrotta RG (2013) Peces marinos de Argentina: biología, distribución, pesca. INIDEP, Mar del Plata

    Google Scholar 

  15. Cousseau MB, Gosztonyi AE, Elías I, Re ME (2004) Estado actual del conocimiento de los peces de la plataforma continental argentina y adyacencias. In: Sánchez RP, Bezzi SI (eds) El mar argentino y sus recursos pesqueros Tomo 4. Los peces marinos de interés pesquero. Caracterización biológica y evaluación del estado de explotación. INIDEP, Mar del Plata, pp 17–38

    Google Scholar 

  16. DeSalle R (2006) Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff. Conserv Biol 20:1545–1547

    Article  PubMed  Google Scholar 

  17. Díaz J, Villanova GV, Brancolini F et al (2016) First DNA Barcode reference library for the identification of South American freshwater fish from the Lower Paraná River. PLoS ONE 11(7):e0157419. https://doi.org/10.1371/journal.pone.0157419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Díaz de Astarloa JM, Mabragaña E, Hanner R, Figueroa DE (2008) Morphological and molecular evidence for a new species of longnose skate (Rajiformes: Rajidae: Dipturus) from Argentinean waters based on DNA barcoding. Zootaxa 1921:35–46

    Article  Google Scholar 

  19. Dyer BS (1998) Phylogenetic systematics and historical biogeography of the Neotropical silverside family Atherinopsidae (Teleostei, Atheriniformes). In: Malabarba LR, Reis RE, Vari RP, Lucena ZM, Lucena CAS (eds) Phylogeny and classification of neotropical fishes. Edipucrs, Porto Alegre, pp 519–536

    Google Scholar 

  20. Dyer BS (2006) Systematic revision of the South American silversides (Teleostei, Atheriniformes). Biocell 30:69–88

    PubMed  Google Scholar 

  21. Dyer BS, Chernoff B (1996) Phylogenetic relationships among atheriniform fishes (Teleostei: Atherinomorpha). Zool J Linn Soc 117:1–69

    Article  Google Scholar 

  22. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under linux and windows. Mol Ecol Resour 10:564–567

    Article  PubMed  PubMed Central  Google Scholar 

  24. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  26. García G, Ríos N, Gutiérrez V, Guerra-Varela J, Bouza-Fernández C, Gómez-Pardo B, Martínez-Portela P (2014) Promiscuous speciation with gene flow in silverside fish genus Odontesthes (Atheriniformes, Atherinopsidae) from South Western atlantic ocean basins. PLoS ONE 8:e104659

    Article  CAS  Google Scholar 

  27. González-Castro M, Díaz de Astarloa JM, Cousseau MB et al (2009) Fish composition in a south-western Atlantic temperate coastal lagoon: spatial-temporal variation and relationships with environmental variables. J Mar Biol Assoc UK 89:593–604

    Article  Google Scholar 

  28. González-Castro M, Rosso JJ, Mabragaña E, Díaz de Astarloa JM (2016) Surfing among species, populations and morphotypes: inferring boundaries between two species of new world silversides (Atherinopsidae). CR Biol 399(1):10–29

    Article  Google Scholar 

  29. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identification through DNA barcodes. Proc R Soc Lond B Biol 270:313–321

    Article  CAS  Google Scholar 

  30. Helfman S, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes, biology, evolution and ecology, 2nd edn. Wiley-Blackwell, Oxford

    Google Scholar 

  31. Heras S, Roldán MI (2011) Phylogenetic inference in Odontesthes and Atherina (Teleostei: Atheriniformes) with insights into ecological adaptation. CR Biol 334:273–281

    Article  CAS  Google Scholar 

  32. Hughes LC, Somoza GM, Nguyen BN, Bernot JP, González-Castro M, de Astarloa JMD, Ortí G (2017) Transcriptomic differentiation underlying marine-to-freshwater transitions in the South American silversides Odontesthes argentinensis and O. bonariensis (Atheriniformes). Ecol Evol 7:5258–5268. https://doi.org/10.1002/ece3.3133

    Article  PubMed  PubMed Central  Google Scholar 

  33. Isla F (1997) Seasonal behaviour of Mar Chiquita tidal inlet in relation to adjacent beaches, Argentina. J Coastal Res 13(4):1221–1232

    Google Scholar 

  34. Isla F (2012) Highstands of the sea level and the speciation of coastal communities: opportunities for the new territories in Southern South America. Biodivers Chile 7:45–59

    Google Scholar 

  35. Ivanova NV, deWaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002

    Article  CAS  Google Scholar 

  36. Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7:544–548

    Article  CAS  Google Scholar 

  37. Lahille F (1929) El pejerrey. Boletín del Ministerio de Agricultura de la Nación 28(3):260–395

    Google Scholar 

  38. Lescak EA, Bassham SL, Catchen J, Gelmond O, Sherbick ML, von Hippel FA (2015) Evolution of stickleback in 50 years on earthquake-uplifted islands. PNAS 112(52):E7204–E7212. https://doi.org/10.1073/pnas.1512020112

    Article  CAS  PubMed  Google Scholar 

  39. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  40. Llompart FM, Colautti DC, Maiztegui T, Cruz-Jimenez AM, Baigún CRM (2013) Biological traits and growth patterns of pejerrey Odontesthes argentinensis. J Fish Biol 82:458–474

    Article  CAS  PubMed  Google Scholar 

  41. Mabragaña E, Díaz de Astarloa JM, Hanner R, Zhang J, González-Castro M (2011) DNA Barcoding identifies Argentine fishes from marine and brackish waters. PLoS ONE 6:e28655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Matthew E, Neilson ME, Stepien CA (2009) Evolution and phylogeography of the tubenose goby genus Proterorhinus (Gobiidae: Teleostei): evidence for new cryptic species. Biol J Linn Soc 96:664–684

    Article  Google Scholar 

  43. Moreira AL, Taylor EB (2015) The origin and genetic divergence of black” kokanee, a novel reproductive ecotype of Oncorhynchus nerka. Can J Fish Aquat Sci 72:1584–1595

    Article  Google Scholar 

  44. Moresco A, Bemvenuti MA (2006) Biologia reprodutiva do peixe-rei Odontesthes argentinensis (Valenciennes) (Atherinopsidae) da região marinha costeira do sul do Brasil. Rev Bras Zool 23:1168–1174

    Article  Google Scholar 

  45. Nelson JS, Grande TC, Wilson MVH (2016) Fishes of the world, 5th edn. Wiley, New Jersey

    Google Scholar 

  46. Ratnasingham PDN (2013) Hebert P (2013) A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS ONE 8:e66213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rosso JJ, Mabragaña E, González-Castro M, de Astarloa JMD (2012) DNA barcoding Neotropical fishes: news from the Pampa Plain, Argentina. Mol Ecol Res 12:999–1011

    Article  CAS  Google Scholar 

  48. Rosso JJ, Rueda EC, Sanchez S et al (2017) Basin-scale distribution and haplotype partitioning in different genetic lineages of the Neotropical migratory fish Salminus brasiliensis. Aquat Conserv. https://doi.org/10.1002/aqc.2830

    Article  Google Scholar 

  49. Rueda EC, Mullaney KA, Conte-Grand C, Evelyn MH, Cussac V, Ortí G (2017) Displacement of native Patagonian freshwater silverside populations (Odontesthes hatcheri, Atherinopsidae) by introgressive hybridization with introduced O. bonariensis. Biol Invasions 19:971–988. https://doi.org/10.1007/s10530-016-1295-y

    Article  Google Scholar 

  50. Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  51. Storni S (1915) Informe sobre el levantamiento hidrográfico de la Laguna Mar Chiquita y alrededores. Anuario Hidrográfico 1915:294–299

    Google Scholar 

  52. Tajima F (1989) Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Takahashi H, Moller PR, Shedko SV, Ramatulla T, Joen SR, Zhang CG, Sideleva VG, Takata K, Sakai H, Goto A, Nishida M (2016) Species phylogeny and diversification process of Northeast Asian Pungitius revealed by AFLP and mtDNA markers. Mol Phylogenet Evol 99:44–52

    Article  PubMed  Google Scholar 

  54. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  Google Scholar 

  55. Taylor EB, Foote CJ, Wood CC (1996) Molecular genetic evidence for parallel life-history evolution within a Pacific salmon (sockeye salmon and kokanee, Oncorhynchusnerka). Evolution 50:401–416

    PubMed  Google Scholar 

  56. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc B 360:1847–1857

    Article  CAS  Google Scholar 

  57. Ward RD, Hanner R, Hebert PDN (2009) The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 74:329–356

    Article  CAS  PubMed  Google Scholar 

  58. White BN (1986) The Isthmian link, antitropicality and American biogeography: distributional history of the Atherinopsinae (Pisces: Atherinidae). Syst Zool 35(2):176–194

    Article  Google Scholar 

  59. Yamasaki YY, Nishida M, Suzuki T, Mukai T, Watanabe K (2015) Phylogeny, hybridization, and life history evolution of Rhinogobius gobies in Japan, inferred from multiple nuclear gene sequences. Mol Phylogenet Evol 90:20–33

    Article  CAS  PubMed  Google Scholar 

  60. Yokoyama R, Goto A (2005) Evolutionary history of freshwater sculpins, genusCottus (Teleostei; Cottidae) and related taxa, as inferred from mitochondrial DNA phylogeny. Mol Phylogenet Evol 36:654–668

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by CONICET (PIP No. 11220130100339), MINCYT (PICT-2014-0665) and also personal funds of MGC. The authors would like to thank: Julio Mangiarotti (forest guard of Mar Chiquita Biosphere Reserve), Daniel Giménez (silversides sport-game fishing expert); Pablo Rizzo, Cristian Di Paolo and Marcelo Pons (sport game fishing guides of Mar Chiquita); Daniel Blanco, Santiago Gaudioso and Juan Pablo Gaudioso (San Gabriel and Juan y Juan fishing-points of Mar Chiquita); Carlos Martin (fisherman of Mar del Plata); Mónica Iza and Florencia Celesia (Mar Chiquita Town Hall) and Mar Chiquita Town Hall authorities (Flavia Laguné and Carlos Alberto Ronda).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mariano González-Castro.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Not aplicable. No studies with human participants were performed by any of the authors.

Research involving human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors.

Statement on the welfare of animals

Fish under study are not protected (local restrictions, IUCN or CITES listed species) under wildlife conservation. No experimentation was conducted on live specimens in this study, as in fact they were no longer alive when were obtained from sport (Mar Chiquita Coastal lagoon, Mar Chiquita coast and San Blas Bay) and artisanal fishermen (Mar del Plata coast, Comodoro Rivadavia coast) upon landing. The locations involved in the study were not part of any protected area, except for Mar Chiquita Coastal lagoon; however, as stated above, fishes obtained in this lagoon came from sport game fishermen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González-Castro, M., Rosso, J.J., Delpiani, S.M. et al. Inferring boundaries among fish species of the new world silversides (Atherinopsidae; genus Odontesthes): new evidences of incipient speciation between marine and brackish populations of Odontesthes argentinensis. Genetica 147, 217–229 (2019). https://doi.org/10.1007/s10709-019-00066-2

Download citation

Keywords

  • Fishes
  • Incipient speciation
  • Taxonomy
  • Barcoding
  • Haplotype network
  • Odontesthes argentinensis
  • Population divergence