Advertisement

Genetica

pp 1–13 | Cite as

Inferring boundaries among fish species of the new world silversides (Atherinopsidae; genus Odontesthes): new evidences of incipient speciation between marine and brackish populations of Odontesthes argentinensis

  • Mariano González-CastroEmail author
  • Juan José Rosso
  • Sergio Matías Delpiani
  • Ezequiel Mabragaña
  • Juan Martín Díaz de Astarloa
Original Paper
  • 36 Downloads

Abstract

Species of new world silversides (Actinopterygii; Atherinopsidae; genus Odontesthes) possess economic relevance, biological interest and ecological importance. In the present paper we: (A) investigate the molecular diversity in marine species of Odontesthes from the South West Atlantic Ocean (SWAO), and analyse their interspecific relationships and divergence by means of DNA Barcoding, including its freshwater congeners, as well. (B) Explore the suitability of DNA Barcoding to analyse the diversity and distribution of haplotypes in Odontesthes argentinensis, the only well documented marine species from the SWAO that exhibit putative estuarine and marine populations. Molecular analysis revealed 100% of agreement between morphological identification and molecular identity. Odontesthes argentinensis, Odontesthes platensis, Odontesthes smitti, Odontesthes nigricans and Odontesthes incisa were assigned to five different barcode index numbers (BINs). Maximum-likelihood analysis showed that all marine species of Odontesthes clustered separately in a unique monophyletic phylogroup, comprising five well defined haplogroups, with genetic divergence between groups ranging from 2.75 to 7.11%. The genetic analysis including freshwater congeners showed that O. incisa clustered alone occupying a basal position. The Fst pairwise comparisons within O. argentinensis support the existence of three population groups: one conformed by Mar Chiquita Lagoon (MCh) specimens, and the others by Mar del Plata/Mar Chiquita coast and San Blas Bay coastal specimens, respectively. The AMOVA showed significant overall differentiation (Fst = 0.238; p = 0.00001) for the entire data set. The previous/present evidence is discussed, and strongly suggests that incipient speciation is occurring in O. argentinensis argentinean populations, and specimens from MCh would be considered at present as the leading candidate of a marine to freshwater incipient speciation event.

Keywords

Fishes Incipient speciation Taxonomy Barcoding Haplotype network Odontesthes argentinensis Population divergence 

Notes

Acknowledgements

This work was supported by CONICET (PIP No. 11220130100339), MINCYT (PICT-2014-0665) and also personal funds of MGC. The authors would like to thank: Julio Mangiarotti (forest guard of Mar Chiquita Biosphere Reserve), Daniel Giménez (silversides sport-game fishing expert); Pablo Rizzo, Cristian Di Paolo and Marcelo Pons (sport game fishing guides of Mar Chiquita); Daniel Blanco, Santiago Gaudioso and Juan Pablo Gaudioso (San Gabriel and Juan y Juan fishing-points of Mar Chiquita); Carlos Martin (fisherman of Mar del Plata); Mónica Iza and Florencia Celesia (Mar Chiquita Town Hall) and Mar Chiquita Town Hall authorities (Flavia Laguné and Carlos Alberto Ronda).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interests.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Not aplicable. No studies with human participants were performed by any of the authors.

Research involving human participants and/or animals

This article does not contain any studies with human participants performed by any of the authors.

Statement on the welfare of animals

Fish under study are not protected (local restrictions, IUCN or CITES listed species) under wildlife conservation. No experimentation was conducted on live specimens in this study, as in fact they were no longer alive when were obtained from sport (Mar Chiquita Coastal lagoon, Mar Chiquita coast and San Blas Bay) and artisanal fishermen (Mar del Plata coast, Comodoro Rivadavia coast) upon landing. The locations involved in the study were not part of any protected area, except for Mar Chiquita Coastal lagoon; however, as stated above, fishes obtained in this lagoon came from sport game fishermen.

Supplementary material

10709_2019_66_MOESM1_ESM.doc (94 kb)
Supplementary material 1 Table S1. Specimen code of individuals employed for Phylogenetic analysis (ML, Fig. 2) of marine Odontesthes from Argentina (DOC 94 kb)
10709_2019_66_MOESM2_ESM.pdf (8 kb)
Supplementary material 2 Figure S2. K2P Neighbour-Joining Tree of COI sequences available in BOLD included in the BIN AAB5756 (PDF 8 kb)
10709_2019_66_MOESM3_ESM.pdf (14 kb)
Supplementary material 3 Figure S3. K2P Neighbour-Joining Tree of COI sequences available in BOLD included in the BIN AAB5755 (PDF 13 kb)

References

  1. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefGoogle Scholar
  2. Beheregaray LB, Sunnucks P (2001) Fine-scale genetic structure, estuarine colonization and incipient speciation in the marine silverside fish Odontesthes argentinensis. Mol Ecol 10:2849–2866CrossRefGoogle Scholar
  3. Bemvenuti MA (2000) Diferenciação geográfica do peixe-rei Odontesthes argentinensis (Atherinopsidae), no extremo sul do Brasil, através da morfometria multivariada. Atlántica 22:71–79Google Scholar
  4. Bemvenuti MA (2002) Diferenciação morfológica das espécies de peixes-rei, Odontesthes Evermann & Kendall (Osteichthyes, Atherinopsidae) no extremo sul do Brasil: morfometria multivariada. Rev Bras Zool 19:251–287CrossRefGoogle Scholar
  5. Bemvenuti MA (2006) Silversides in South Brazil: morphological and ecological aspects. Biocell 30:111–118Google Scholar
  6. Betancur-R R, Orti G, Stein AM, Marceniuk AP, Pyron A (2012) Apparent signal of competition limiting diversification after ecological transitions from marine to freshwater habitats. Ecol Lett 15:822–830CrossRefGoogle Scholar
  7. Betancur-R R, Broughton RE, Wiley EO et al (2013) The tree of life and a new classification of bony fishes. PLoS Curr.  https://doi.org/10.1371/currents.tol.53ba26640df0ccaee75bb165c8c26288 Google Scholar
  8. Bloom DD, Weir JT, Piller KR, Lovejoy NR (2013) Do freshwater fishes diversify faster than marine fishes? A test using state-dependent diversification analyses and molecular phylogenetics of New World silversides (Atherinopsidae). Evolution 67:2040–2057CrossRefGoogle Scholar
  9. Bogan S, de los Reyes ML, Cenizo MM (2009) Primeros registros fósiles de pejerreyes (Telostei: Atheriniformes) en el Pleistoceno Medio de la provincia de Buenos Aires, Argentina. Rev Mus Argentino Cienc Nat 11(2):185–192CrossRefGoogle Scholar
  10. Campanella D, Hughes LC, Unmack PJ, Bloom DD, Piller KR, Ortí G (2015) Multi-locus fossil-calibrated phylogeny of Atheriniformes (Teleostei, Ovalentaria). Mol Phylogenet Evol 86:8–23CrossRefGoogle Scholar
  11. Capurro LRA (1981) Características físicas del Atlántico Sudoccidental. In: Boltovskoy D (ed) Atlas de1 Zooplancton del Atlántico Sudoccidental y métodos de trabajo con el zooplancton marino. Publicaciones Especiales INIDEP, Mar de1 Plata, pp 219225Google Scholar
  12. Cardiel J (1748) Diario del Viaje y Misión a1 Río del Sauce (Río Negro) por Fines de Marzo de 1748. Inst Invest Geogr Buenos Aires, 1930, p 278Google Scholar
  13. Cousseau MB (2010) Ictiología. Aspectos Fundamentales. La vida de los peces sudamericanos. EUDEM, Mar del PlataGoogle Scholar
  14. Cousseau MB, Perrotta RG (2013) Peces marinos de Argentina: biología, distribución, pesca. INIDEP, Mar del PlataGoogle Scholar
  15. Cousseau MB, Gosztonyi AE, Elías I, Re ME (2004) Estado actual del conocimiento de los peces de la plataforma continental argentina y adyacencias. In: Sánchez RP, Bezzi SI (eds) El mar argentino y sus recursos pesqueros Tomo 4. Los peces marinos de interés pesquero. Caracterización biológica y evaluación del estado de explotación. INIDEP, Mar del Plata, pp 17–38Google Scholar
  16. DeSalle R (2006) Species discovery versus species identification in DNA barcoding efforts: response to Rubinoff. Conserv Biol 20:1545–1547CrossRefGoogle Scholar
  17. Díaz J, Villanova GV, Brancolini F et al (2016) First DNA Barcode reference library for the identification of South American freshwater fish from the Lower Paraná River. PLoS ONE 11(7):e0157419.  https://doi.org/10.1371/journal.pone.0157419 CrossRefGoogle Scholar
  18. Díaz de Astarloa JM, Mabragaña E, Hanner R, Figueroa DE (2008) Morphological and molecular evidence for a new species of longnose skate (Rajiformes: Rajidae: Dipturus) from Argentinean waters based on DNA barcoding. Zootaxa 1921:35–46Google Scholar
  19. Dyer BS (1998) Phylogenetic systematics and historical biogeography of the Neotropical silverside family Atherinopsidae (Teleostei, Atheriniformes). In: Malabarba LR, Reis RE, Vari RP, Lucena ZM, Lucena CAS (eds) Phylogeny and classification of neotropical fishes. Edipucrs, Porto Alegre, pp 519–536Google Scholar
  20. Dyer BS (2006) Systematic revision of the South American silversides (Teleostei, Atheriniformes). Biocell 30:69–88Google Scholar
  21. Dyer BS, Chernoff B (1996) Phylogenetic relationships among atheriniform fishes (Teleostei: Atherinomorpha). Zool J Linn Soc 117:1–69CrossRefGoogle Scholar
  22. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefGoogle Scholar
  23. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under linux and windows. Mol Ecol Resour 10:564–567CrossRefGoogle Scholar
  24. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  25. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925Google Scholar
  26. García G, Ríos N, Gutiérrez V, Guerra-Varela J, Bouza-Fernández C, Gómez-Pardo B, Martínez-Portela P (2014) Promiscuous speciation with gene flow in silverside fish genus Odontesthes (Atheriniformes, Atherinopsidae) from South Western atlantic ocean basins. PLoS ONE 8:e104659CrossRefGoogle Scholar
  27. González-Castro M, Díaz de Astarloa JM, Cousseau MB et al (2009) Fish composition in a south-western Atlantic temperate coastal lagoon: spatial-temporal variation and relationships with environmental variables. J Mar Biol Assoc UK 89:593–604CrossRefGoogle Scholar
  28. González-Castro M, Rosso JJ, Mabragaña E, Díaz de Astarloa JM (2016) Surfing among species, populations and morphotypes: inferring boundaries between two species of new world silversides (Atherinopsidae). CR Biol 399(1):10–29CrossRefGoogle Scholar
  29. Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003) Biological identification through DNA barcodes. Proc R Soc Lond B Biol 270:313–321CrossRefGoogle Scholar
  30. Helfman S, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes, biology, evolution and ecology, 2nd edn. Wiley-Blackwell, OxfordGoogle Scholar
  31. Heras S, Roldán MI (2011) Phylogenetic inference in Odontesthes and Atherina (Teleostei: Atheriniformes) with insights into ecological adaptation. CR Biol 334:273–281CrossRefGoogle Scholar
  32. Hughes LC, Somoza GM, Nguyen BN, Bernot JP, González-Castro M, de Astarloa JMD, Ortí G (2017) Transcriptomic differentiation underlying marine-to-freshwater transitions in the South American silversides Odontesthes argentinensis and O. bonariensis (Atheriniformes). Ecol Evol 7:5258–5268.  https://doi.org/10.1002/ece3.3133 CrossRefGoogle Scholar
  33. Isla F (1997) Seasonal behaviour of Mar Chiquita tidal inlet in relation to adjacent beaches, Argentina. J Coastal Res 13(4):1221–1232Google Scholar
  34. Isla F (2012) Highstands of the sea level and the speciation of coastal communities: opportunities for the new territories in Southern South America. Biodivers Chile 7:45–59Google Scholar
  35. Ivanova NV, deWaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002CrossRefGoogle Scholar
  36. Ivanova NV, Zemlak TS, Hanner RH, Hebert PDN (2007) Universal primer cocktails for fish DNA barcoding. Mol Ecol Notes 7:544–548CrossRefGoogle Scholar
  37. Lahille F (1929) El pejerrey. Boletín del Ministerio de Agricultura de la Nación 28(3):260–395Google Scholar
  38. Lescak EA, Bassham SL, Catchen J, Gelmond O, Sherbick ML, von Hippel FA (2015) Evolution of stickleback in 50 years on earthquake-uplifted islands. PNAS 112(52):E7204–E7212.  https://doi.org/10.1073/pnas.1512020112 CrossRefGoogle Scholar
  39. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452CrossRefGoogle Scholar
  40. Llompart FM, Colautti DC, Maiztegui T, Cruz-Jimenez AM, Baigún CRM (2013) Biological traits and growth patterns of pejerrey Odontesthes argentinensis. J Fish Biol 82:458–474CrossRefGoogle Scholar
  41. Mabragaña E, Díaz de Astarloa JM, Hanner R, Zhang J, González-Castro M (2011) DNA Barcoding identifies Argentine fishes from marine and brackish waters. PLoS ONE 6:e28655CrossRefGoogle Scholar
  42. Matthew E, Neilson ME, Stepien CA (2009) Evolution and phylogeography of the tubenose goby genus Proterorhinus (Gobiidae: Teleostei): evidence for new cryptic species. Biol J Linn Soc 96:664–684CrossRefGoogle Scholar
  43. Moreira AL, Taylor EB (2015) The origin and genetic divergence of black” kokanee, a novel reproductive ecotype of Oncorhynchus nerka. Can J Fish Aquat Sci 72:1584–1595CrossRefGoogle Scholar
  44. Moresco A, Bemvenuti MA (2006) Biologia reprodutiva do peixe-rei Odontesthes argentinensis (Valenciennes) (Atherinopsidae) da região marinha costeira do sul do Brasil. Rev Bras Zool 23:1168–1174CrossRefGoogle Scholar
  45. Nelson JS, Grande TC, Wilson MVH (2016) Fishes of the world, 5th edn. Wiley, New JerseyCrossRefGoogle Scholar
  46. Ratnasingham PDN (2013) Hebert P (2013) A DNA-based registry for all animal species: the barcode index number (BIN) system. PLoS ONE 8:e66213CrossRefGoogle Scholar
  47. Rosso JJ, Mabragaña E, González-Castro M, de Astarloa JMD (2012) DNA barcoding Neotropical fishes: news from the Pampa Plain, Argentina. Mol Ecol Res 12:999–1011CrossRefGoogle Scholar
  48. Rosso JJ, Rueda EC, Sanchez S et al (2017) Basin-scale distribution and haplotype partitioning in different genetic lineages of the Neotropical migratory fish Salminus brasiliensis. Aquat Conserv.  https://doi.org/10.1002/aqc.2830 Google Scholar
  49. Rueda EC, Mullaney KA, Conte-Grand C, Evelyn MH, Cussac V, Ortí G (2017) Displacement of native Patagonian freshwater silverside populations (Odontesthes hatcheri, Atherinopsidae) by introgressive hybridization with introduced O. bonariensis. Biol Invasions 19:971–988.  https://doi.org/10.1007/s10530-016-1295-y CrossRefGoogle Scholar
  50. Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, OxfordGoogle Scholar
  51. Storni S (1915) Informe sobre el levantamiento hidrográfico de la Laguna Mar Chiquita y alrededores. Anuario Hidrográfico 1915:294–299Google Scholar
  52. Tajima F (1989) Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123:585–595Google Scholar
  53. Takahashi H, Moller PR, Shedko SV, Ramatulla T, Joen SR, Zhang CG, Sideleva VG, Takata K, Sakai H, Goto A, Nishida M (2016) Species phylogeny and diversification process of Northeast Asian Pungitius revealed by AFLP and mtDNA markers. Mol Phylogenet Evol 99:44–52CrossRefGoogle Scholar
  54. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  55. Taylor EB, Foote CJ, Wood CC (1996) Molecular genetic evidence for parallel life-history evolution within a Pacific salmon (sockeye salmon and kokanee, Oncorhynchusnerka). Evolution 50:401–416Google Scholar
  56. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc B 360:1847–1857CrossRefGoogle Scholar
  57. Ward RD, Hanner R, Hebert PDN (2009) The campaign to DNA barcode all fishes, FISH-BOL. J Fish Biol 74:329–356CrossRefGoogle Scholar
  58. White BN (1986) The Isthmian link, antitropicality and American biogeography: distributional history of the Atherinopsinae (Pisces: Atherinidae). Syst Zool 35(2):176–194CrossRefGoogle Scholar
  59. Yamasaki YY, Nishida M, Suzuki T, Mukai T, Watanabe K (2015) Phylogeny, hybridization, and life history evolution of Rhinogobius gobies in Japan, inferred from multiple nuclear gene sequences. Mol Phylogenet Evol 90:20–33CrossRefGoogle Scholar
  60. Yokoyama R, Goto A (2005) Evolutionary history of freshwater sculpins, genusCottus (Teleostei; Cottidae) and related taxa, as inferred from mitochondrial DNA phylogeny. Mol Phylogenet Evol 36:654–668CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Grupo de Biotaxonomía Morfológica y Molecular de Peces, Instituto de Investigaciones Marinas y Costeras, Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de Mar del PlataMar Del PlataArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations