Skip to main content

Mechanisms of karyotype evolution in the Brazilian scorpions of the subfamily Centruroidinae (Buthidae)

Abstract

The recently-revised subfamily Centruroidinae is part of the New World clade of buthid scorpions. In this study, we analyzed the cytogenetic characteristics of nine of the 10 Brazilian centruroidines, and one undescribed species of the genus Ischnotelson, using a phylogenetic approach to determine the chromosomal rearrangements responsible for the differentiation of karyotypes among the species. The cytogenetic data recorded in the present study supported the new taxonomic arrangement of the Centruroidinae, with all the species of the same genus sharing the same or similar diploid numbers, i.e., 2n = 20 or 22 in Troglorhopalurus lacrau and T. translucidus, 2n = 25 or 26 in Ischnotelson sp., I. guanambiensis and I. peruassu, and 2n = 28 in Jaguajir agamemnon, J. pintoi and J. rochae. The karyotype modelling in the ChromEvol software indicated 2n = 18 as the ancestral diploid number of the Centruroidinae. The differentiation of karyotypes among the centruroidine genera was based on increasing chromosome numbers resulting from progressive fission events. These changes probably occurred prior to the diversification of the genera Ischnotelson, Jaguajir, Physoctonus and Rhopalurus, and appear to have played a more important role in karyotype evolution at the intergeneric level than the interspecific one. However, the observed increase in diploid numbers was not accompanied by changes in the number or location of ribosomal genes or telomeric sequences. The identification of meiotic cells in female specimens also allowed us to discuss the mechanisms of achiasmatic meiosis in scorpions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Adilardi RS, Ojanguren-Affilastro AA, Martí DA, Mola LM (2014) Cytogenetic analysis on geographically distant parthenogenetic populations of Tityus trivittatus Kraepelin, 1898 (Scorpiones, Buthidae): karyotype, constitutive heterochromatin and rDNA localization. Comp Cytogenet 8:81–92

    Article  Google Scholar 

  • Adilardi RS, Ojanguren-Affilastro AA, Mattoni CI, Mola LM (2015) Male and female meiosis in the mountain scorpion Zabius fuscus (Scorpiones, Buthidae): heterochromatin, rDNA and TTAGG telomeric repeats. Genetica 143:393–401

    CAS  Article  Google Scholar 

  • Adilardi RS, Ojanguren-Affilastro AA, Mola LM (2016) Sex-linked chromosome heterozygosity in males of Tityus confluens (Buthidae): a clue about the presence of sex chromosomes in scorpions. Plos One 11:e0164427

    Article  Google Scholar 

  • Almeida MC, Goll LG, Artoni RF, Nogaroto V, Matiello RR, Vicari MR (2010) Physical mapping of 18S rDNA cistron in species of the Omophoita genus (Coleoptra, Alticinae) using fluorescent in situ hybridization. Micron 41:729–734

    CAS  Article  Google Scholar 

  • Almeida BRR, Milhomem-Paixão SSR, Noronha RCR, Nagamachi CY, Costa MJR, Pardal PPO, Coelho JS, Pieczarka JC (2017) Karyotype diversity and chromosomal organization of repetitive DNA in Tityus obscurus (Scorpiones, Buthidae). BMC Genet 18:35

    Article  Google Scholar 

  • Dernburg AF (2001) Here, there, and everywhere: kinetochore function on holocentric chromosomes. J Cell Biol 153:F33–F38

    CAS  Article  Google Scholar 

  • Dobigny G, Ducroz JF, Robinson TJ, Volobouev V (2004) Cytogenetics and cladistics. Syst Biol 53:470–484

    Article  Google Scholar 

  • Escudero M, Martín-Bravo S, Mayrose I, Fernández-Mazuecos M, Fiz-Palacios O, Hipp AL, Pimentel M, Jiménez-Mejías P, Valcárcel V, Vargas P, Luceño M (2014) Karyotypic changes through dysploidy persist longer over evolutionary time than polyploidy changes. Plos One 9:e85266

    Article  Google Scholar 

  • Escudero M, Márquez-Corro JI, Hipp AL (2016) The phylogenetic origins and evolutionary history of holocentric chromosomes. Syst Bot 41:580–585

    Article  Google Scholar 

  • Esposito LA, Yamaguti HY, Souza CA, Pinto-da-Rocha R, Prendini L (2017) Systematic revision of the Neotropical club-tailed scorpions, Physoctonus, Rhopalurus, and Troglophopalurus, revalidation of Heteroctenus, and descriptions of two new genera and three new species (Buthidae: Rhopalurusinae). Bull Am Nat Hist 415

  • Fet V, Gantenbein B, Gromov AV, Lowe G, Lourenço WR (2003) The first molecular phylogeny of Buthidae (Scorpiones). Euscorpius 4:1–10

    Google Scholar 

  • Fet V, Soleglad ME, Lowe G (2005) A new trichobothrial character for the high-level systematics of Buthoidea (Scorpiones: Buthida). Euscorpius 3:1–40

    Google Scholar 

  • Glick L, Mayrose I (2014) ChromEvol: assessing the pattern of chromosomes number evolution and the inference of polyploidy along a phylogeny. Mol Biol Evol 31:1914–1922

    CAS  Article  Google Scholar 

  • Gruber SL, Zina J, Narimatsu H, Haddad CFB, Kasahara S (2012) Comparative karyotype analysis and chromosome evolution in the genus Aplastodiscus (Cophomantini, Hylinae, Hylidae). BMC Genetics 13:28

    CAS  Article  Google Scholar 

  • Gustavsson I, Świtoński M, Larsson K, Plöen L, Höjer K (1988) Chromosome banding studies and synaptonemal complex analyses of four reciprocal translocations in the domestic pig. Hereditas 109:169–184

    CAS  Article  Google Scholar 

  • Howell WM, Black DA (1980) Controlled silver staining of nucleolus organizer regions with protective colloidal developer: a 1-step method. Experientia 36:1014–1015

    CAS  Article  Google Scholar 

  • Jankowska M, Fuchs J, Klocke E, Fojtová M, Polanská P, Fajkus J, Schubert V, Houben A (2015) Holokinetic centromeres and efficient telomere healing enable rapid karyotype evolution. Chromosoma 124:519–528

    Article  Google Scholar 

  • John B (1990) Meiosis. Cambridge University Press, Melbourne

    Book  Google Scholar 

  • Koehler S, Cabral JS, Whitten WM, Williams NH, Singer RB, Neubig KM, Guerra M, Souza AP, Amaral MCE (2008) Molecular phylogeny of the Neotropical genus Christensonella (Orchidaceae, Maxillariinae): species delimitation and insights into chromosome evolution. Ann Bot 102:491–507

    Article  Google Scholar 

  • Kovařík F, Lowe G, Šťáhlavský F (2016) Scorpions of the Horn of Africa (Arachnida: Scorpiones). Part. IX. Lanzatus, Orthochirus, and Somalicharmus (Buthidae), with description of Lanzatus somalilandus sp. n. and Orthochirus afar sp. n. Euscorpius 232:1–38

    Google Scholar 

  • Mattos VF, Cella DM, Carvalho LS, Candido DM, Schneider MC (2013) High chromosome variability and the presence of multivalent associations in buthid scorpions. Chromosome Res 21:121–136

    CAS  Article  Google Scholar 

  • Mattos VF, Carvalho LS, Cella DM, Schneider MC (2014) Location of 45S ribosomal genes in mitotic and meiotic chromosomes of buthid scorpions. Zool Sci 31:603–607

    Article  Google Scholar 

  • Mayrose I, Barker MS, Otto SP (2010) Probabilistic models of chromosome number evolution and the influence of polyploidy. Syst Biol 59:132–144

    Article  Google Scholar 

  • Melters DP, Paliulis LV, Korf IF, Chan SWL (2012) Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Res 20:579–593

    CAS  Article  Google Scholar 

  • Mohan KN, Rani BS, Kulashreshta PS, Kadandale JS (2011) Characterization of TTAGG telomeric repeats, their interstitial occurrence and constitutively active telomerase in the mealybug Planococcus lilacinus (Homoptera; Coccoidea). Chromosoma 120:165–175

    CAS  Article  Google Scholar 

  • Moraes AP, Souza-Chies TT, Stiehl-Alves EM, Burchardt P, Eggers L, Siljak-Yakovlev S, Brown SC, Chauveau O, Nadot S, Bourge M, Viccini LF, Kaltchuk-Santos E (2015) Evolutionary trends in Iridaceae: new cytogenetic findings from the New World. Bot J Linn Soc 177:27–49

    Article  Google Scholar 

  • Moraes AP, Simões AO, Alayon DIO, Barros F, Forni-Martins ER (2016) Detecting mechanisms of karyotype evolution in Heterotaxis (Orchidaceae). PlosOne 11:e0165960

    Article  Google Scholar 

  • Mravinac B, Meštrović N, Ćavrak VV, Plohl M (2011) TCAGG, an alternative telomeric sequence in insects. Chromosoma 120:367–376

    CAS  Article  Google Scholar 

  • Nguyen P, Sahara K, Yoshido A, Marec F (2010) Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). Genetica 138:343–354

    CAS  Article  Google Scholar 

  • Nunn GB, Theisen BF, Christensen B, Arctander P (1996) Simplicity-correlated size growth of the nuclear 28S ribosomal RNA D3 expansion segment in the crustacean order Isopoda. J Mol Evol 42:211–223

    CAS  Article  Google Scholar 

  • Ojanguren-Affilastro AA, Adilardi RS, Mattoni CL, Ramírez MJ, Ceccarrelli FS (2017a) Dated phylogenetic studies of the southernmost American buthids (Scorpiones: Buthidae). Mol Phylogenet Evol 110:39–49

    Article  Google Scholar 

  • Ojanguren-Affilastro AA, Adilardi RS, Cajade R, Ramírez MJ, Ceccarelli FS, Mola LM (2017b) Multiple approaches to understanding the taxonomic status of an enigmatic new scorpion species of the genus Tityus (Buthidae) from the biogeographic island of Paraje Tres Cerros (Argentina). Plos One 12:e0181337

    Article  Google Scholar 

  • Oliver-Bonet M, Benet J, Sun F, Navarro J, Abad C, Liehr T, Starke H, Greene C, Ko E, Martin RH (2005) Meiotic studies in two human reciprocal translocations and their association with spermatogenic failure. Hum Reprod 20:683–688

    CAS  Article  Google Scholar 

  • Ortiz AM, Seijo JG, Fernández A, Lavia GI (2011) Meiotic behavior and pollen viability of tetraploid Arachis glabrata and A nitida species (Section Rhizomatosae, Leguminosae): implications concerning their polyploid nature and seed set production. Plant Syst Evol 292:73–83

    Article  Google Scholar 

  • Pellicer J, Kelly LJ, Leitch IJ, Zomlefer WB, Fay MF (2014) A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae. New Phytol 201:1484–1497

    CAS  Article  Google Scholar 

  • Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83:2934–2938

    CAS  Article  Google Scholar 

  • Piza ST (1940) Poliploidia natural em Tityus bahiensis (Scorpiones) associada a aberrações cromossômicas espontâneas. Rev Biol Hyg 10:143–155

    Google Scholar 

  • Piza ST (1947) Uma raça cromossômica natural de Tityus bahiensis (Scorpiones-Buthidae). An Esc Sup Agric Luiz de Queiroz 62:183–192

    Article  Google Scholar 

  • Piza ST (1949) “Ouro Preto”, a nova e interessante raça cromossômica de Tityus bahiensis (Scorpiones-Buthidae). Sci Genet 3:147–159

    Google Scholar 

  • Piza ST (1957) The chromosomes of Rhopalurus (Scorpiones-Buthidae). Can Entomol 89:565–568

    Article  Google Scholar 

  • Rein JO (2018) The scorpion files. http://www.ntnu.no/ub/scorpion-files. Accessed 22 Aug 2018

  • Riess RW, Barker KR, Bieselle JJ (1978) Nuclear and chromosomal changes during sperm formation in the scorpion, Centruroides vittatus (Say). Caryologia 31:147–160

    Article  Google Scholar 

  • Sadílek D, Nguyen P, Koç H, Kovařík F, Yağmur EA, Šťáhlavský F (2015) Molecular cytogenetics of Androctonus scorpions: an oasis of calm in the turbulent karyotype evolution of the diverse family Buthidae. Biol J Linn Soc 115:69–76

    Article  Google Scholar 

  • Sahara K, Marec F, Traut W (1999) TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res 7:449–460

    CAS  Article  Google Scholar 

  • Schneider MC, Cella DM (2010) Karyotype conservation in 2 populations of the parthenogenetic scorpion Tityus serrulatus (Buthidae): rDNA and its associated heterochromatin are concentrated on only one chromosome. J Hered 101:491–496

    CAS  Article  Google Scholar 

  • Schneider MC, Zacaro AA, Pinto-da-Rocha R, Candido DM, Cella DM (2009a) Complex meiotic configuration of the holocentric chromosomes: the intriguing case of the scorpion Tityus bahiensis. Chromosome Res 17:883–898

    CAS  Article  Google Scholar 

  • Schneider MC, Zacaro AA, Pinto-da-Rocha R, Candido DM, Cella DM (2009b) A comparative cytogenetic analysis of 2 Bothriuridae species and overview of the chromosome data of Scorpiones. J Hered 100:545–555

    CAS  Article  Google Scholar 

  • Schneider MC, Mattos VF, Carvalho LS, Cella DM (2015) Organization and behaviour of the synaptonemal complex during achiasmatic meiosis of four buthid scorpions. Cytogenet Genome Res 144:341–347

    Article  Google Scholar 

  • Schneider MC, Mattos VF, Cella DM (2018) The scorpion cytogenetic database. http://www.arthropodacytogenetics.bio.br/scorpionsdatabase/index.html. Accessed 22 Aug 2018

  • Shanahan CM (1989a) Cytogenetics of Australian scorpions. I. Interchange polymorphism in the family Buthidae. Genome 32:882–889

    Article  Google Scholar 

  • Shanahan CM (1989b) Cytogenetics of Australian scorpions. II. Chromosome polymorphism in species of Urodacus (family Scorpionidae). Genome 32:890–900

    Article  Google Scholar 

  • Shanahan CM, Hayman DL (1990) Synaptonemal complex formation in male scorpions exhibiting achiasmate meiosis and structural heterozygosity. Genome 33:914–926

    Article  Google Scholar 

  • Sharma PP, Fernández R, Esposito LA, González-Santillán E, Monod L (2015) Phylogenomic resolution of Scorpions reveals multilevel discordance with morphological phylogenetic signal. Proc R Soc B 282:20142953

    Article  Google Scholar 

  • Šťáhlavský F, Štundlová j, Lowe G, Stockmann M, Kovařík F (2018) Application of cytogenetic markers in the taxonomy of flat rock scorpions (Scorpiones: Hormuridae), with the description of Hadogenes weygoldti sp. n. Zool Anz 273:173–182

    Article  Google Scholar 

  • Vítková M, Král J, Traut W, Zrzavý J, Marec F (2005) The evolutionary origin of insect telomeric reapeats, (TTAGG)n. Chromosome Res 13:145–156

    Article  Google Scholar 

  • White MJD (1968) Karyotypes and nuclear size in the spermatogenesis of grasshoppers belonging to the subfamilies Gomphomastacinae, Chininae and Biroellinae (Orthoptera, Eumastacidae). Caryologia 21:167–179

    Article  Google Scholar 

  • White MJD (1970) Karyotypes and meiotic mechanisms of some eumastacid grasshoppers from East Africa, Madagascar, India and South America. Chromosoma 30:62–97

    CAS  Article  Google Scholar 

  • Wilson EB (1931) The distribution of sperm-forming materials in scorpions. J Morphol Physiol 52:429–483

    Article  Google Scholar 

  • Yamazaki K, Yahata H, Kobayashi N, Makioka T (2001) Egg maturation and parthenogenetic recovery of diploidy in the scorpion Liocheles australasiae (Fabricius) (Scorpions, Ischnuridae). J Morphol 247:39–50

    CAS  Article  Google Scholar 

  • Zickler D, Kleckner N (1999) Meiotic chromosomes: integrating structure and function. Annu Rev Genet 33:603–754

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are indebted to two anonymous reviewers for critical reading and valuable suggestions for the manuscript. The authors are grateful to Dr. Ana Paula de Moares from the Universidade Federal do ABC in São Bernardo do Campo, São Paulo (Brazil), and Marcos André de Carvalho from Universidade Federal de Mato Grosso in Cuiabá, Mato Grosso (Brazil), for helping with the ChromEvol analysis. This research was supported by funding from the Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP (2011/21643-1). We thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES for the fellowship granted to Crislaine Vanessa Ubinski. This paper is part of the “Programa de Pesquisas em Biodiversidade do Semiárido-PPBio Semiárido” (CNPq 558317/2009-0, 457471/ 2012-3). Specimen collecting permits were provided by the Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA) and the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) (25471-1; 51395-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marielle Cristina Schneider.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ubinski, C.V., Carvalho, L.S. & Schneider, M.C. Mechanisms of karyotype evolution in the Brazilian scorpions of the subfamily Centruroidinae (Buthidae). Genetica 146, 475–486 (2018). https://doi.org/10.1007/s10709-018-0038-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-018-0038-7

Keywords

  • Cytogenetics
  • Chromosome rearrangements
  • Holocentric chromosomes
  • Meiosis
  • 28S rDNA genes
  • Telomere