A reexamination on the deficiency of riboflavin accumulation in Malpighian tubules in larval translucent mutants of the silkworm, Bombyx mori

Abstract

A variety of insects accumulate high contents of riboflavin (vitamin B2) in their Malpighian tubules (MTs). Although this process is known to be genetically controlled, the mechanism is not known. In the 1940s and the 1950s, several studies showed that riboflavin contents were low in the MTs of some Bombyx mori (silkworm) mutants with translucent larval skin mutations (e.g., w-3, od, oa, and otm) and that genes responsible for these translucent mutations also affected riboflavin accumulation in the MTs. Since the 2000s, it has been shown that the w-3 gene encodes an ABC transporter, whereas genes responsible for od, oa, and otm mutations encode for the biogenesis of lysosome-related organelles. These findings suggest that some genes of ABC transporters and biogenesis of lysosome-related organelles may control the accumulation of riboflavin in MTs. Therefore, we reexamined the effects that translucent mutations have on the accumulation of riboflavin in MTs by using the translucent and wild-type segregants in mutant strains to measure the specific effect that each gene has on riboflavin accumulation (independent of genomic background). We used nine translucent mutations (w-3oe, oa, od, otm, Obs, oy, or, oh, and obt) even though the genes responsible for some of these mutations (Obs, oy, or, oh, and obt) have not yet been isolated. Through observation of larval MTs and measurements of riboflavin content using high-performance liquid chromatography, we found that the oa, od, otm, and or mutations were responsible for low contents of riboflavin in MTs, whereas the Obs and oy mutations did not affect riboflavin accumulation. This indicates that the molecular mechanism for riboflavin accumulation is similar but somewhat different than the mechanism responsible for uric acid accumulation in epidermal cells. We found that the genes responsible for oa, od, and otm mutations were consistent with those already established for uric acid accumulation in larval epidermis. This suggests that these three genes control riboflavin accumulation in MTs through a mechanism similar to that of uric acid accumulation, although we do not yet know why the or mutation also controls riboflavin accumulation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abraham EG, Sezutsu H, Kanda T et al (2000) Identification and characterisation of a silkworm ABC transporter gene homologous to Drosophila white. Mol Gen Genet 264:11–19

    CAS  Article  PubMed  Google Scholar 

  2. Aruga H, Eguchi M, Terao K (1952a) On riboflavin in the blood and Malpighian tubes in the larva of Bombyx mori. In: 4th Meeting of Kanto Branch of Japanese Society of Sericultural Science (in Japanese)

  3. Aruga H, Yoshitake N, Eguchi M (1952b) Studies on the mechanism of the expressions of the translucent and lemon genes in the silkworm. (I) On the expressions of the translucent and lemon genes in the silkworm egg. J Seric Sci Jpn 21:255–263 (in Japanese with English summary)

    CAS  Google Scholar 

  4. Bacher A, Eberhardt S, Fischer M et al (2000) Biosynthesis of vitamin B2 (riboflavin). Annu Rev Nutr 20:153–167

    CAS  Article  PubMed  Google Scholar 

  5. Dadd RH (1985) Nutrition: organisms. In: Kerkut GA, Gilbert LI (eds) Comparative insect physiology, biochemistry and pharmacology, vol 4. Pergamon, Oxford, pp 313–390

    Google Scholar 

  6. Eguchi M (1955) Comparison of vitamin B2 contents in the blood and eggs between normal and od-translucent silkworms (Bombyx mori L.). J Seric Sci Jpn 24:350–352 (in Japanese with English summary)

    Google Scholar 

  7. Eguchi M (1956) Changes of the riboflavin content in several organs and tissues of od and normal silkworms, Bombyx mori during metamorphosis. Jpn J Genet 31:279–283

    Article  Google Scholar 

  8. Fujii T, Daimon T, Uchino K et al (2010) Transgenic analysis of the BmBLOS2 gene that governs the translucency of the larval integument of the silkworm, Bombyx mori. Insect Mol Biol 19:659–667

    CAS  Article  PubMed  Google Scholar 

  9. Fujii T, Banno Y, Abe H et al (2012) A homolog of the human Hermansky-Pudluck Syndrome-5 (HPS5) gene is responsible for the oa larval translucent mutants in the silkworm, Bombyx mori. Genetica 140:463–468

    CAS  Article  PubMed  Google Scholar 

  10. Fujii T, Yamamoto K, Banno Y (2016) Molybdenum cofactor deficiency causes translucent integument, male-biased lethality, and flaccid paralysis in the silkworm Bombyx mori. Insect Biochem Mol Biol 73:20–26

    CAS  Article  PubMed  Google Scholar 

  11. Goldsmith MR, Shimada T, Abe H (2005) The genetics and genomics of the silkworm, Bombyx mori. Annu Rev Entomol 50:71–100

    CAS  Article  PubMed  Google Scholar 

  12. Ishihara R (1956) Studies on the Malpighian tubules of the silkworm, Bombyx mori L. (I) The accumulation of riboflavin in the Malpighian tubules and the riboflavin content of feces in the silkworm. J Seric Sci Jpn 25:135–140 (in Japanese with English summary)

    CAS  Google Scholar 

  13. Ishihara R (1958a) Studies on the Malpighian tubules of the silkworm, Bombyx mori L. (IV) Reciprocal transplantation of the Malpighian tubules between od-oily larva and normal larva. J Seric Sci Jpn 27:193–198 (in Japanese with English summary)

    Google Scholar 

  14. Ishihara R (1958b) Studies on the Malpighian tubules of the silkworm, Bombyx mori L. (V) Supplementary studies on the accumulation of riboflavin in the Malpighian tubules. J Seric Sci Jpn 27:374–381 (in Japanese with English summary)

    CAS  Google Scholar 

  15. Ishihara R (1958c) Studies on the Malpighian tubules of the silkworm, Bombyx mori L. (VI) Riboflavin content in the Malpighian tubules of several oily mutants. J Seric Sci Jpn 27:382–387 (in Japanese with English summary)

    CAS  Google Scholar 

  16. Ito K, Katsuma S, Yamamoto K et al (2009) A 25 bp-long insertional mutation in the BmVarp gene causes the waxy translucent skin of the silkworm, Bombyx mori. Insect Biochem Mol Biol 39:287–293

    CAS  Article  PubMed  Google Scholar 

  17. Kikkawa H (1948) On the tryptophan-pigment in the silkworm, Bombyx mori. Seibutsugaku no Shinpo. Tokyo Kyoritsu Press 3:36–70 (in Japanese)

    Google Scholar 

  18. Kiuchi T, Banno Y, Katsuma S et al (2011) Mutations in an amino acid transporter gene are responsible for sex-linked translucent larval skin of the silkworm, Bombyx mori. Insect Biochem Mol Biol 41:680–687

    CAS  Article  PubMed  Google Scholar 

  19. Kobayashi I, Uchino K, Iizuka T et al (2010) Rescue of the Aojuku white-egg translucent (w-3 ol) Bombyx mori mutant by transgenic expression of the wild-type Bmwh3 gene. J Insect Biotecnol Sericol 79:111–116

    CAS  Google Scholar 

  20. Kômoto N (2002) A deleted portion of one of the two xanthine dehydrogenase genes causes translucent larval skin in the oq mutant of the silkworm (Bombyx mori). Insect Biochem Mol Biol 32:591–597

    Article  PubMed  Google Scholar 

  21. Kômoto N, Sezutsu H, Yukuhiro K et al (2003) Mutations of the silkworm molybdenum cofactor sulfurase gene, og, cause translucent larval skin. Insect Biochem Mol Biol 33:417–427

    Article  CAS  PubMed  Google Scholar 

  22. Kômoto N, Quan GX, Sezutsu H et al (2009) A single-base deletion in an ABC transporter gene causes white eyes, white eggs, and translucent larval skin in the silkworm w-3 oe mutant. Insect Biochem Mol Biol 39:152–156

    Article  CAS  PubMed  Google Scholar 

  23. Koyanagi T, Hatamura M (1944) Relationship between the od translucency and flavin accumulation in the silkworm, Bombyx mori (Preceding report). Medicine Biology (Tokyo) 5:605–608 (in Japanese)

    Google Scholar 

  24. Ladenstein R, Fischer M, Bacher A (2013) The lumazine synthase/riboflavin synthase complex: shapes and functions of a highly variable enzyme system. FEBS J 280:2537–2563

    CAS  Article  PubMed  Google Scholar 

  25. Lin Y, Meng Y, Wang YX et al (2013) Vitellogenin receptor mutation leads to the oogenesis mutant phenotype “scanty vitellin” of the silkworm, Bombyx mori. J Biol Chem 288:13345–13355

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Nakamura M, Yanagawa H, Kuarta K (1992) Homeostasis of vitamin B2 and role of the Malpighian tubes in the silkworm, Bombyx mori. J Seric Sci Jpn 61:52–58 (in Japanese with English summary)

    CAS  Google Scholar 

  27. Nickla H (1972) Interaction between pteridine synthesis and riboflavin accumulation in Drosophila melanogaster. Can J Genet Cytol 14:105–111

    CAS  Article  PubMed  Google Scholar 

  28. Sang JH (1956) The quantitative nutritional requirements of Drosophila melanogaster. J Exp Biol 33:45–72

    CAS  Google Scholar 

  29. Tamura T, Akai H (1990) Comparative ultrastructure of larval hypodermal cell in normal and oily Bombyx mutants. Cytologia 55:519–530

    Article  Google Scholar 

  30. Tatematsu K, Yamamoto K, Uchino K et al (2011) Positional cloning of silkworm white egg 2 (w-2) locus shows functional conservation and diversification of ABC transporters for pigmentation in insects. Genes Cells 16:331–342

    CAS  Article  PubMed  Google Scholar 

  31. Tuan PA, Zhao S, Kim JK et al (2014) Riboflavin accumulation and molecular characterization of cDNAs encoding bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase, lumazine synthase, and riboflavin synthase in different organs of Lycium chinense plant. Molecules 19:17141–17153

    Article  CAS  PubMed  Google Scholar 

  32. Van Breugel FM (1987) Differential riboflavin deposition in white and variegated white mutants of Drosophila hydei. Dev Genet 8:45–58

    Article  PubMed  Google Scholar 

  33. Wang L, Kiuchi T, Fujii T et al (2013a) Mutation of a novel ABC transporter gene is responsible for the failure to incorporate uric acid in the epidermis of ok mutants of the silkworm, Bombyx mori. Insect Biochem Mol Biol 43:562–571

    CAS  Article  PubMed  Google Scholar 

  34. Wang L, Kiuchi T, Fujii T et al (2013b) Reduced expression of the dysbindin-like gene in the Bombyx mori ov mutant exhibiting mottled translucency of the larval skin. Genome 56:101–108

    CAS  Article  PubMed  Google Scholar 

  35. Yuasa M, Kiuchi T, Banno Y et al (2016) Identification of the silkworm quail gene reveals a crucial role of a receptor guanylyl cyclase in larval pigmentation. Insect Biochem Mol Biol 68:33–40

    CAS  Article  PubMed  Google Scholar 

  36. Zhang H, Kiuchi T, Wang L et al (2017) Bm-muted, orthologous to mouse muted and encoding a subunit of the BLOC-1 complex, is responsible for the otm translucent mutation of the silkworm Bombyx mori. Gene 629:92–100

    CAS  Article  PubMed  Google Scholar 

  37. Zhang H, Kiuchi T, Hirayama C et al (2018) Bombyx ortholog of the Drosophila eye color gene brown controls riboflavin transport in Malpighian tubules. Insect Biochem Mol Biol 92:65–72

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was in part supported by KAKENHI (15H02482, 24658048, and 22128004). The silkworm strains and related information were provided by National BioResource Project, Japan. We thank the anonymous reviewers for their criticism of the manuscript. We thank the Institute for Sustainable Agro-ecosystem Services, University of Tokyo, for facilitating the mulberry cultivation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Toru Shimada.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5335 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Kiuchi, T., Hirayama, C. et al. A reexamination on the deficiency of riboflavin accumulation in Malpighian tubules in larval translucent mutants of the silkworm, Bombyx mori. Genetica 146, 425–431 (2018). https://doi.org/10.1007/s10709-018-0034-y

Download citation

Keywords

  • Bombyx mori
  • Translucent mutation
  • Riboflavin accumulation
  • Malpighian tubules
  • ABC transporter
  • Lysosome-related organelle