Skip to main content
Log in

Analysis of novel high-molecular-weight prolamins from Leymus multicaulis (Kar. et Kir.) Tzvelev and L. chinensis (Trin. ex Bunge) Tzvelev

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Nine novel high-molecular-weight prolamins (HMW-prolamins) were isolated from Leymus multicaulis and L. chinensis. Based on the structure of the repetitive domains, all nine genes were classified as D-hordeins but not high-molecular-weight glutenin subunits (HMW-GSs) that have been previously isolated in Leymus spp. Four genes, Lmul 1.2, 2.4, 2.7, and Lchi 2.5 were verified by bacterial expression, whereas the other five sequences (1.3 types) were classified as pseudogenes. The four Leymus D-hordein proteins had longer N-termini than those of Hordeum spp. [116/118 vs. 110 amino acid (AA) residues], whereas three (Lmul 1.2, 2.4, and 2.7) contained shorter N-termini than those of the Ps. juncea (116 vs. 118 AA residues). Furthermore, Lmul 1.2 was identified as the smallest D-hordein, and Lmul 1.2 and 2.7 had an additional cysteines. Phylogenetic analysis supported that the nine D-hordeins of Leymus formed two independent clades, with all the 1.3 types clustered with Ps. juncea Ns 1.3, whereas the others were clustered together with the D-hordeins from Hordeum and Ps. juncea and the HMW-GSs from Leymus. Within the clade of four D-hordein genes and HMW-GSs, the HMW-GSs of Leymus formed a separated branch that served as an intermediate between the D-hordeins of Ps. juncea and Leymus. These novel D-hordeins may be potentially utilized in the improvement of food processing properties particularly those relating to extra cysteine residues. The findings of the present study also provide basic information for understanding the HMW-prolamins among Triticeae species, as well as expand the sources of D-hordeins from Hordeum to Leymus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AA:

Amino acid

CS:

Chinese spring

HMW-GSs:

High molecular weight glutenin subunits

HMW-prolamins:

High-molecular-weight prolamins

ORFs:

Open reading frames

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

Sh:

Shinchunaga

References

  • Alvarez JB, Ballesteros J, Sillero JA, Martin LM (1992) Tritordeum: a new crop of potential importance in the food industry. Hereditas 116:193–197

    Article  Google Scholar 

  • Alvarez JB, Campos LAC, Martín A, Sillero JA, Martín LM (1999) Genetic analysis of prolamins synthesised by the Hch genome and their effects on gluten strength in hexaploid tritordeum. Euphytica 107:177–184

    Article  CAS  Google Scholar 

  • Alvarez JB, Martín A, Martín LM (2001) Variation in the high-molecular-weight glutenin subunits coded at the Glu-Hch1 locus in Hordeum chilense. Theor Appl Genet 102:134–137

    Article  CAS  Google Scholar 

  • Anamthawat-Jónsson K (2014) Molecular cytogenetics of Leymus: mapping the Ns genome-specific repetitive sequences. J Syst Evol 52:716–721

    Article  Google Scholar 

  • Anjum FM, Khan MR, Din A, Saeed M, Pasha I, Arshad MU (2007) Wheat gluten: high molecular weight glutenin subunits—structure, genetics, and relation to dough elasticity. J Food Sci 72:56–63

    Article  CAS  Google Scholar 

  • Atanassov P, Borries C, Zaharieva M, Monneveux P (2001) Hordein polymorphism and variation of agromorphological traits in a collection of naked barley. Genet Resour Crop Evol 48:353–360

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Gu YQ, Anderson OD, Londeorë CF, Kong X, Chibbar RN, Lazo GR (2003) Structural organization of the barley D-hordein locus in comparison with its orthologous regions of wheat genomes. Genome 46:1084–1097

    Article  PubMed  CAS  Google Scholar 

  • Habora MEE, Eltayeb AE, Tsujimoto H, Tanaka K (2012) Identification of osmotic stress-responsive genes from Leymus mollis, a wild relative of wheat (Triticum aestivum L.). Breeding Sci 62:78–86

    Article  CAS  Google Scholar 

  • Halford NG, Tatham AS, Sui E, Daroda L, Dreyer T, Shewry PR (1992) Identification of a novel beta-turn-rich repeat motif in the D-hordeins of barley. BBA-Protein Struct Mol Enzymol 1122:118–122

    Article  CAS  Google Scholar 

  • Hu XK, Dai SF, Ouellet T, Balcerzak M, Rocheleau H, Khanizadeh S, Pu ZJ, Yan ZH (2018) Characterization of novel D-hordeins from Ps. juncea. Biol Plant. https://doi.org/10.1007/s10535-018-0775-6

  • Kong LN, Liang Y, Qin LM, Sun L, Xia GM, Liu SW (2014) Characterization of high molecular weight glutenin subunit genes from the Ns genome of Psathyrostachys juncea. Dev Genes Evol 224:189–196

    Article  PubMed  CAS  Google Scholar 

  • Lu BR, Ellstrand N (2014) World food security and the tribe Triticeae (Poaceae): genetic resources of cultivated, wild, and weedy taxa for crop improvement. J Syst Evol 52:661–666

    Article  Google Scholar 

  • Martín A, Alvarez JB, Martín LM, Barro F, Ballesteros J (1999) The development of Tritordeum: a novel cereal for food processing. J Cereal Sci 30:85–95

    Article  Google Scholar 

  • Mohammed YSA, Tahir ISA, Kamal NM, Eltayeb AE, Ali AM, Tsujimoto H (2014) Impact of wheat-Leymus racemosus added chromosomes on wheat adaptation and tolerance to heat stress. Breeding Sci 63:450–460

    Article  CAS  Google Scholar 

  • Pang Y, Chen X, Zhao J, Du W, Cheng X, Wu J, Li Y, Wang L, Wang J, Yang Q (2014) Molecular cytogenetic characterization of a wheat–Leymus mollis 3D (3Ns) substitution line with resistance to leaf rust. J Genet Genomics 41:205–214

    Article  PubMed  Google Scholar 

  • Pistón F, Shewry PR, Barro F (2007) D hordeins of Hordeum chilense: a novel source of variation for improvement of wheat. Theor Appl Genet 115:77–86

    Article  PubMed  Google Scholar 

  • Qi LL, Wang SL, Chen PD, Liu DJ, Friebe B, Gill BS (1997) Molecular cytogenetic analysis of Leymus racemosus chromosomes added to wheat. Theor Appl Genet 95:1084–1091

    Article  CAS  Google Scholar 

  • Qi LL, Pumphrey MO, Friebe B, Chen PD, Gill BS (2008) Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat. Theor Appl Genet 117:1155–1166

    Article  PubMed  CAS  Google Scholar 

  • Rasheed A, Xia XC, Yan YM, Appels R, Mahmood T, He ZH (2014) Wheat seed storage proteins: advances in molecular genetics, diversity and breeding applications. J Cereal Sci 60:11–24

    Article  CAS  Google Scholar 

  • Sha LN, Fan X, Li J, Liao JQ, Zeng J, Wang Y, Kang HY, Zhang HQ, Zheng YL, Zhou YH (2017) Contrasting evolutionary patterns of multiple loci uncover new aspects in the genome origin and evolutionary history of Leymus (Triticeae; Poaceae). Mol Phylogenet Evol 114:175–188

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Halford NG (2002) Cereal seed storage proteins: structures, properties and role in grain utilization. J Exp Bot 53:947–958

    Article  PubMed  CAS  Google Scholar 

  • Shewry PR, Tatham AS (1990) The prolamin storage proteins of cereal seeds: structure and evolution. Biochem J 267:1–12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shewry PR, Halford NG, Tatham AS, Popineau Y, Lafiandra D, Belton PS (2003) The high molecular weight subunits of wheat glutenin and their role in determining wheat processing properties. Adv Food Nutr Res 45:219–302

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Pu Z, Dai S, Pu X, Liu D, Wu B, Lan X, Wei Y, Zheng Y, Yan Z (2014) Characterization of y-type high-molecular-weight glutenins in tetraploid species of Leymus. Dev Genes Evol 224:57–64

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wan Y, Liu K, Wang D, Shewry PR (2000) High-molecular-weight glutenin subunits in the Cylindropyrum and Vertebrata section of the Aegilops genus and identification of subunits related to those encoded by the Dx alleles of common wheat. Theor Appl Genet 101:879–884

    Article  CAS  Google Scholar 

  • Wang RRC, Lu BR (2014) Biosystematics and evolutionary relationships of perennial Triticeae species revealed by genomic analyses. J Syst Evol 52:697–705

    Article  Google Scholar 

  • Wang ML, Atkinson MD, Chinoy CN, Devos KM, Gale MD (1992) Comparative RFLP-based genetic maps of barley chromosome 5 (1H) and rye chromosome 1R. Theor Appl Genet 84:339–344

    PubMed  CAS  Google Scholar 

  • Wang RR, Bothmer RV, Dvořák J, Fedak G, Linde-Laursen I, Muramatsu M (1994) Genome symbols in the Triticeae (Poaceae). In: Wang RR, Jensen KB, Jaussi C (eds) Proceedings of the 2nd International Triticeae Symposium. Logan, Utah, USA, pp 29–34

  • Yen C, Yang JL, Baum BR (2009) Synopsis of Leymus Hochst. (Triticeae: Poaceae). J Syst Evol 47:67–86

    Article  Google Scholar 

  • Yin YQ, Ma DQ, Ding Y (2003) Analysis of genetic diversity of hordein in wild close relatives of barley from Tibet. Theor Appl Genet 107:837–842

    Article  PubMed  CAS  Google Scholar 

  • Zhang HB, Dvořák J (1991) The genome origin of tetraploid species of Leymus (Poaceae: Triticeae) inferred from variation in repeated nucleotide sequences. Am J Bot 78:871–884

    Article  Google Scholar 

  • Zhang A, Li W, Wang C, Yang X, Chen C, Zhu C, Peng N, Tian Z, Wang Y, Zhang H, Liu X, Ji W (2017) Molecular cytogenetic identification of a wheat-Leymus mollis double disomic addition line with stripe rust resistance. Genome 60:375–383

    Article  PubMed  CAS  Google Scholar 

  • Zhao JX, Wang XJ, Pang YH, Cheng XN, Wang LM, Wu J, Yang QH, Chen XH (2016) Molecular cytogenetic and morphological identification of a Wheat—L. mollis 1Ns (1D) substitution line, DM45. Plant Mol Biol Rep 34:1146–1152

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Ministry of Science and Technology of China (2016YFD0100502, 2017YFD0100903), the National Natural Science Foundation of China (U1403185, 31771783), and the Key Fund Project of the Sichuan Provincial Department of Education (15ZA0021) supported this study. Hu XK was supported by the China Scholarship Council under the MOE-AAFC PhD Research Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zehong Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 150 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Dai, S., Song, Z. et al. Analysis of novel high-molecular-weight prolamins from Leymus multicaulis (Kar. et Kir.) Tzvelev and L. chinensis (Trin. ex Bunge) Tzvelev. Genetica 146, 255–264 (2018). https://doi.org/10.1007/s10709-018-0025-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-018-0025-z

Keywords

Navigation