Skip to main content

Advertisement

Log in

A Mos1 transposase in vivo assay to screen new HIV-1 integrase inhibitors

  • Short Communication
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The integrase and transposase enzymes of retrovirus and transposons, respectively, share the catalytic DDE domain. In vitro assays showed that inhibitors of HIV-1 integrase generally inhibit the mariner Mos1 transposase. Using a Drosophila strain in which the mobilisation of the mariner element can be quantified by mosaic eyes, we showed that flies maintained in medium containing 210 µM to 4 mM of raltegravir, or 1 or 2 mM of dolutegravir, which are HIV-1 integrase inhibitor used in AIDS treatment, have 23–33% less somatic mobilisation in mosaic eyes when treated with raltegravir and 28–32% when treated with dolutegravir. The gene expression of the mariner transposase gene, estimated by qPCR, is similar among treated and control flies. The results suggest that in vivo assays using Drosophila can be used as a primary screening of inhibitory drugs for transposase and retroviral integrase. The advantages of this assay are that it is easy, quick, cheap and is an in vivo test, meaning that the tested substance has to have been taken in by cells and has arrived at the target site, which is not the case when in vitro assays are applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Arensburger P, Piégu B, Bigot Y (2016) The future of transposable element annotation and their classification in the light of functional genomics—what we can learn from the fables of Jean de la Fontaine? Mob Genet Elements 6:e1256852

    Article  PubMed  PubMed Central  Google Scholar 

  • Ason B, Knauss DJ, Balke AM, Merkel G, Skalka AM, Reznikoff WS (2005) Targeting Tn5 transposase identifies human immunodeficiency virus type 1 inhibitors. Antimicrob Agents Chemother 49:2035–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barreca ML, De Luca L, Iraci N, Chimirri A (2006) Binding mode prediction of strand transfer HIV-1 integrase inhibitors using Tn5 transposase as a plausible surrogate model for HIV-1 integrase. J Med Chem 49:3994–3997

    Article  CAS  PubMed  Google Scholar 

  • Bouchet N, Bischerour J, Germon S et al (2009) First Mariner Mos1 transposase inhibitors. Med Chem 9:431–439

    CAS  Google Scholar 

  • Chiu TK, Davies DR (2004) Structure and function of HIV-1 integrase. Curr Top Med Chem 4:965–977

    Article  CAS  PubMed  Google Scholar 

  • Curcio MJ, Derbyshire KM (2003) The outs and ins of transposition: from mu to kangaroo. Nat Rev Mol Cell Biol 4:865–877

    Article  CAS  PubMed  Google Scholar 

  • Jacobson JW, Hartl DL (1985) Coupled instability of two x-linked genes in Drosophila mauritiana: germinal and somatic mutability. Genetics 111:57–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jardim SS, Schuch AP, Pereira CM, Loreto ELS (2015) Effects of heat and UV radiation on the mobilization of transposon mariner-Mos1. Cell Stress Chaperones 20:843–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the \(2^{-{\Delta}{\Delta C_{\text T}}}\) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  • Moss DM, Siccardi M, Murphy M, Piperakis MM, Khoo SH, Back DJ, Owen A (2012) Divalent metals and pH alter Raltegravir disposition in vitro. Antimicrob Agents Chemother 56:3020–3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moss DM, Siccardi M, Back DJ, Owen A (2013) Predicting intestinal absorption of raltegravir using a population-based ADME simulation. J Antimicrob Chemother 68:1627–1634

    Article  CAS  PubMed  Google Scholar 

  • Moss L, Wagner D, Kanaoka E, Olson K, Yueh YL, Bowers GD (2015) The comparative disposition and metabolism of dolutegravir, a potent HIV-1 integrase inhibitor, in mice, rats, and monkeys. Xenobiotica 45:60–70

    Article  CAS  PubMed  Google Scholar 

  • Nesmelova IV, Hackett PB (2010) DDE transposases: structural similarity and diversity. Adv Drug Deliv Rev 62:1187–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen BT, Isaacs RD, Teppler H et al (2011) Raltegravir: the first HIV-1 integrase strand transfer inhibitor in the HIV armamentarium. Ann N Y Acad Sci 1222:83–89

    Article  CAS  PubMed  Google Scholar 

  • Pflieger A, Teguo PW, Papastamoulis Y et al (2013) Natural stilbenoids isolated from grapevine exhibiting inhibitory effects against HIV-1 integrase and eukaryote MOS1 transposase in vitro activities. Plos One 8(11):e81184

    Article  PubMed  PubMed Central  Google Scholar 

  • Piégu B, Bire S, Arensburger P, Bigot Y (2015) A survey of transposable element classification systems—a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylog Evol 86:90–109

    Article  Google Scholar 

  • Rice PA, Baker TA (2001) Comparative architecture of transposase and integrase complexes. Nat Struct Biol 8:302–307

    Article  CAS  Google Scholar 

  • Richardson JM, Dawson A, O’Hagan N, Taylor P, Finnegan DJ, Walkinshaw MD (2006) Mechanism of Mos1 transposition: insights from structural analysis. EMBO J 25:1324–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson HM (1995) The Tc1-mariner superfamily of transposons in animals. J Insect Physiol 41:99–105

    Article  CAS  Google Scholar 

  • Rouault J, Casse N, Chénais B, Hua-Van A, Capy P (2009) Automatic classification within families of transposable elements: application to the mariner family. Gene 448:227–232

    Article  CAS  PubMed  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL et al (2007) A unified classification system for eukaryotic transposable elements. Nat Genet 8:973–982

    Article  CAS  Google Scholar 

  • Wolkowicz UM, Morris ER, Robson M, Trubitsyna M, Richardson JM (2014) Structural basis of Mos1 transposase inhibition by the anti-retroviral drug raltegravir. ACS Chem Biol 9:743–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants and fellowships from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Pibic/UFSM/CNPq. The authors would like to thank Marcos Rosa, Tailini Stoffel, and Camila Moura for assistance during the development of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elgion L. S. Loreto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cancian, M., Loreto, E.L.S. A Mos1 transposase in vivo assay to screen new HIV-1 integrase inhibitors. Genetica 146, 243–247 (2018). https://doi.org/10.1007/s10709-018-0007-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-018-0007-1

Keywords

Navigation