, Volume 145, Issue 6, pp 491–502 | Cite as

An American termite in Paris: temporal colony dynamics

  • Guillaume Baudouin
  • Franck Dedeine
  • Nicolas Bech
  • Stéphanie Bankhead-Dronnet
  • Simon Dupont
  • Anne-Geneviève BagnèresEmail author
Original Paper


Termites of the genus Reticulitermes are widespread invaders, particularly in urban habitats. Their cryptic and subterranean lifestyle makes them difficult to detect, and we know little about their colony dynamics over time. In this study we examined the persistence of Reticulitermes flavipes (Kollar) colonies in the city of Paris over a period of 15 years. The aim was (1) to define the boundaries of colonies sampled within the same four areas over two sampling periods, (2) to determine whether the colonies identified during the first sampling period persisted to the second sampling period, and (3) to compare the results obtained when colonies were delineated using a standard population genetic approach versus a Bayesian clustering method that combined both spatial and genetic information. Herein, colony delineations were inferred from genetic differences at nine microsatellite loci and one mitochondrial locus. Four of the 18 identified colonies did not show significant differences in their genotype distributions between the two sampling periods. While allelic richness was low, making it hard to reliably distinguish colony family type, most colonies appeared to retain the same breeding structure over time. These large and expansive colonies showed an important ability to fuse (39% were mixed-family colonies), contained hundreds of reproductives and displayed evidence of isolation-by-distance, suggesting budding dispersal. These traits, which favor colony persistence over time, present a challenge for pest control efforts, which apply treatment locally. The other colonies showed significant differences, but we cannot exclude the possibility that their genotype distributions simply changed over time.


Social insects Colony delineation Reticulitermes flavipes Urban pest GENELAND 



This study is a part of G. Baudouin’s PhD research. We are grateful to Tony Dié and Matthieu Vachon of Pharmabois Company for providing some of the 2016 samples. We also wish to thank Claude Marès and Sylvain Genty of Paris City Hall for sharing their knowledge on termite infestations in the city and providing access to infested buildings. We wish to thank J. Pearce for her English editing services. This work was funded by a contract to A-G Bagnères between the French National Center for Scientific Research (CNRS) and the city of Paris (Direction du Logement et de l’Habitat).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10709_2017_9991_MOESM1_ESM.pdf (388 kb)
Supplementary material 1 (PDF 388 KB)


  1. Aluko GA, Husseneder C (2007) Colony dynamics of the formosan subterranean termite in a frequently disturbed urban landscape. J Econ Entomol 100:1037–1046CrossRefPubMedGoogle Scholar
  2. Arango RA, Marschalek DA, Green F III et al (2015) Genetic analysis of termite colonies in Wisconsin. Environ Entomol. doi: 10.1093/ee/nvv023 PubMedGoogle Scholar
  3. Balkenhol N, Fortin M-J (2015) Basics of study design: sampling landscape heterogeneity and genetic variation for landscape genetic studies. In: Balkenhol N, Cushman SA, Storfer AT, Waits LP (eds) Landscape genetics: concepts, methods, applications. Wiley, Chichester, pp 58–76CrossRefGoogle Scholar
  4. Bankhead-Dronnet S, Perdereau E, Kutnik M et al (2015) Spatial structuring of the population genetics of a European subterranean termite species. Ecol Evol. doi: 10.1002/ece3.1566 PubMedPubMedCentralGoogle Scholar
  5. Buchli HR (1958) L’origine des castes et les potentialités ontogéniques des termites européens du genre Reticulitermes (Holmgren). In: Annales des Sciences Naturelles vol 12, pp 249–263Google Scholar
  6. Bulmer MS, Adams ES, Traniello JFA (2001) Variation in colony structure in the subterranean termite Reticulitermes flavipes. Behav Ecol Sociobiol 49:236–243. doi: 10.1007/s002650000304 CrossRefGoogle Scholar
  7. Caron R (2003) Arrêté relatif à la protection des acquéreurs et des propriétaires contre les termites et autres xylophages. Recueil des actes administratifs de la ville de Paris, ParisGoogle Scholar
  8. Chouvenc T, Scheffrahn RH, Su N-Y (2016) Establishment and spread of two invasive subterranean termite species (Coptotermes formosanus and C. gestroi; Isoptera: Rhinotermitidae) in metropolitan Southeastern Florida (1990–2015). Fla Entomol 99:187–191. doi: 10.1653/024.099.0205 CrossRefGoogle Scholar
  9. DeHeer CJ, Vargo EL (2004) Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space. Mol Ecol 13:431–441. doi: 10.1046/j.1365-294X.2003.02065.x CrossRefPubMedGoogle Scholar
  10. DeHeer CJ, Vargo EL (2008) Strong mitochondrial DNA similarity but low relatedness at microsatellite loci among families within fused colonies of the termite Reticulitermes flavipes. Insectes Soc 55:190–199. doi: 10.1007/s00040-008-0999-0 CrossRefGoogle Scholar
  11. DeHeer CJ, Kutnik M, Vargo EL, Bagnères A-G (2005) The breeding system and population structure of the termite Reticulitermes grassei in Southwestern France. Heredity 95:408–415. doi: 10.1038/sj.hdy.6800744 CrossRefPubMedGoogle Scholar
  12. Dronnet S, Ohresser M, Vargo EL et al (2002) Colony studies of the subterranean termite, Reticulitermes santonensis Feytaud, in the city of Paris. In: Proceedings of the 4th International Conference on Urban Pests, pp 7–10Google Scholar
  13. Dronnet S, Bagnères A-G, Juba TR, Vargo EL (2004) Polymorphic microsatellite loci in the European subterranean termite, Reticulitermes santonensis (Feytaud). Mol Ecol Notes 4:127–129. doi: 10.1111/j.1471-8286.2004.00600.x CrossRefGoogle Scholar
  14. Dronnet S, Chapuisat M, Vargo EL et al (2005) Genetic analysis of the breeding system of an invasive subterranean termite, Reticulitermes santonensis, in urban and natural habitats. Mol Ecol 14:1311–1320. doi: 10.1111/j.1365-294X.2005.02508.x CrossRefPubMedGoogle Scholar
  15. Dronnet S, Lohou C, Christidès J-P, Bagnères A-G (2006) Cuticular hydrocarbon composition reflects genetic relationship among colonies of the introduced termite Reticulitermes santonensis (Feytaud). J Chem Ecol 32:1027–1042. doi: 10.1007/s10886-006-9043-x CrossRefPubMedGoogle Scholar
  16. Evans TA, Forschler BT, Grace JK (2013) Biology of invasive termites: a worldwide review. Annu Rev Entomol 58:455–474. doi: 10.1146/annurev-ento-120811-153554 CrossRefPubMedGoogle Scholar
  17. Frantz AC, Cellina S, Krier A et al (2009) Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J Appl Ecol 46:493–505. doi: 10.1111/j.1365-2664.2008.01606.x CrossRefGoogle Scholar
  18. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Lausanne University, Lausanne, Switzerland. Accessed 13 Dec 2016
  19. Guillot G, Estoup A, Mortier F, Cosson JF (2005a) A spatial statistical model for landscape genetics. Genetics 170:1261–1280. doi: 10.1534/genetics.104.033803 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Guillot G, Mortier F, Estoup A (2005b) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715. doi: 10.1111/j.1471-8286.2005.01031.x CrossRefGoogle Scholar
  21. Guillot G, Lebois R, Coulon A, Frantz A (2009) Statistical methods in spatial genetics. Mol Ecol 18:4734–4756. doi: 10.1111/j.1365-294X.2009.04410.x CrossRefPubMedGoogle Scholar
  22. Guillot G, Renaud S, Ledevin R et al (2012) A unifying model for the analysis of phenotypic, genetic, and geographic data. Syst Biol 61:897–911. doi: 10.1093/sysbio/sys038 CrossRefPubMedGoogle Scholar
  23. Hamilton WD (1964) The genetical evolution of social behaviour. I. J Theor Biol 7:1–16CrossRefPubMedGoogle Scholar
  24. Holzer B, Keller L, Chapuisat M (2009) Genetic clusters and sex-biased gene flow in a unicolonial Formica ant. BMC Evol Biol 9:6–69. doi: 10.1186/1471-2148-9-69 CrossRefGoogle Scholar
  25. Husseneder C, Messenger MT, Su N et al (2005) Colony social organization and population genetic structure of an introduced population of Formosan subterranean termite from New Orleans, Louisiana. J Econ Entomol 98:1421–1434CrossRefPubMedGoogle Scholar
  26. Husseneder C, Simms DM, Riegel C (2007) Evaluation of treatment success and patterns of reinfestation of the Formosan subterranean termite (Isoptera: Rhinotermitidae). J Econ Entomol 100:1370–1380CrossRefPubMedGoogle Scholar
  27. Husseneder C, Powell JE, Grace JK et al (2008) Worker size in the Formosan subterranean termite in relation to colony breeding structure as inferred from molecular markers. Environ Entomol 37:400–408CrossRefPubMedGoogle Scholar
  28. Husseneder C, Simms DM, Delatte JR et al (2012) Genetic diversity and colony breeding structure in native and introduced ranges of the Formosan subterranean termite, Coptotermes formosanus. Biol Invasions 14:419–437. doi: 10.1007/s10530-011-0087-7 CrossRefGoogle Scholar
  29. Leniaud L, Pichon A, Uva P, Bagnères A-G (2009) Unicoloniality in Reticulitermes urbis: a novel feature in a potentially invasive termite species. Bull Entomol Res 99:1–10. doi: 10.1017/S0007485308006032 CrossRefPubMedGoogle Scholar
  30. Lohou C, Burban G, Clément J-L et al (1997) Protection des arbres d’alignement contre les Termites souterrains: L’expérience menée à Paris. Phytoma 492:42–44Google Scholar
  31. Majid AHA, Ahmad AH (2015) Define colony number of subterranean termites Coptotermes gestroi (Isoptera: Rhinotermitidae) in selected infested structures. Sains Malays 44:211–216CrossRefGoogle Scholar
  32. Mantel N (1967) The detection of disease clustering and generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  33. Miura T, Roisin Y, Matsumoto T (2000) Molecular phylogeny and biogeography of the nasute termite genus Nasutitermes (Isoptera: Termitidae) in the Pacific tropics. Mol Phylogenet Evol 17:1–10. doi: 10.1006/mpev.2000.0790 CrossRefPubMedGoogle Scholar
  34. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  35. Nei M (1987) Molecular evolutionary genetics. Columbia university press, New YorkGoogle Scholar
  36. Nobre T, Nunes L, Bignell DE (2008) Colony interactions in Reticulitermes grassei population assessed by molecular genetic methods. Insectes Soc 55:66–73. doi: 10.1007/s00040-007-0971-4 CrossRefGoogle Scholar
  37. Parman V, Vargo EL (2010) Colony-level effects of imidacloprid in subterranean termites (Isoptera: Rhinotermitidae). J Econ Entomol 103:791–798. doi: 10.1603/EC09386 CrossRefPubMedGoogle Scholar
  38. Paulmier I, Vauchot B, Pruvost A et al (1997) Evaluation of two populations of Reticulitermes santonensis De Feytaud (Isoptera) by triple mark-recapture procedure. In: 28th annual meeting of the international group of wood preservation. Whistler, pp 25–30Google Scholar
  39. Perdereau E, Bagnères A-G, Dupont S, Dedeine F (2010) High occurrence of colony fusion in a European population of the American termite Reticulitermes flavipes. Insectes Soc 57:393–402. doi: 10.1007/s00040-010-0096-z CrossRefGoogle Scholar
  40. Perdereau E, Bagnères A-G, Bankhead-Dronnet S et al (2013a) Global genetic analysis reveals the putative native source of the invasive termite, Reticulitermes flavipes, in France. Mol Ecol 22:1105–1119. doi: 10.1111/mec.12140 CrossRefPubMedGoogle Scholar
  41. Perdereau E, Velona A, Dupont S et al (2013b) Colony breeding structure of the invasive termite Reticulitermes urbis (Isoptera: Rhinotermitidae). J Econ Entomol 106:2216–2224CrossRefPubMedGoogle Scholar
  42. Perdereau E, Bagnères A-G, Vargo EL et al (2015) Relationship between invasion success and colony breeding structure in a subterranean termite. Mol Ecol 24:2125–2142. doi: 10.1111/mec.13094 CrossRefPubMedGoogle Scholar
  43. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evol Int J org Evol 43:258–275CrossRefGoogle Scholar
  44. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249CrossRefGoogle Scholar
  45. Rust MK, Su N (2012) Managing social insects of urban importance. Annu Rev Entomol 57:355–375. doi: 10.1146/annurev-ento-120710-100634 CrossRefPubMedGoogle Scholar
  46. Simon C, Frati F, Beckenbach A et al (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701. doi: 10.1093/aesa/87.6.651 CrossRefGoogle Scholar
  47. Su N-Y, Scheffrahn RH (1990) Economically important termites in the United States and their control. Sociobiology 17:77–94Google Scholar
  48. Thorne BL, Traniello JFA, Adams ES, Bulmer M (1999) Reproductive dynamics and colony structure of subterranean termites of the genus Reticulitermes (Isoptera Rhinotermitidae): a review of the evidence from behavioral, ecological, and genetic studies. Ethol Ecol Evol 11:149–169CrossRefGoogle Scholar
  49. Tonini F, Hochmair HH, Scheffrahn RH (2013) Simulating the spread of an invasive termite in an urban environment using a stochastic individual-based model. Environ Entomol 42:412–423CrossRefPubMedGoogle Scholar
  50. Vargo EL (2000) Polymorphism at trinucleotide microsatellite loci in the subterranean termite Reticulitermes flavipes. Mol Ecol 9:817–820CrossRefPubMedGoogle Scholar
  51. Vargo EL (2003a) Genetic structure of Reticulitermes flavipes and R. virginicus (Isoptera: Rhinotermitidae) colonies in an urban habitat and tracking of colonies following treatment with hexaflumuron bait. Environ Entomol 32:1271–1282CrossRefGoogle Scholar
  52. Vargo EL (2003b) Hierarchical analysis of colony and population genetic structure of the eastern subterranean termite, Reticulitermes flavipes, using two classes of molecular markers. Evol Int J org Evol 57:2805–2818CrossRefGoogle Scholar
  53. Vargo EL (2014) 11 Molecular ecology meets urban entomology: how molecular biology is changing urban pest management. In: Dhang P (ed) Urban insect pests: sustainable management strategies. CABI, p 166Google Scholar
  54. Vargo EL, Carlson JR (2006) Comparative study of breeding systems of sympatric subterranean termites (Reticulitermes flavipes and R. hageni) in central North Carolina using two classes of molecular genetic markers. Environ Entomol 35:173–187. doi: 10.1603/0046-225X-35.1.173 CrossRefGoogle Scholar
  55. Vargo EL, Husseneder C (2009) Biology of subterranean termites: insights from molecular studies of Reticulitermes and Coptotermes. Annu Rev Entomol 54:379–403. doi: 10.1146/annurev.ento.54.110807.090443 CrossRefPubMedGoogle Scholar
  56. Vargo EL, Parman V (2012) Effect of fipronil on subterranean termite colonies (Isoptera: Rhinotermitidae) in the field. J Econ Entomol 105:523–532CrossRefPubMedGoogle Scholar
  57. Vargo EL, Husseneder C, Grace JK (2003) Colony and population genetic structure of the Formosan subterranean termite, Coptotermes formosanus, in Japan. Mol Ecol 12:2599–2608. doi: 10.1046/j.1365-294X.2003.01938.x CrossRefPubMedGoogle Scholar
  58. Vargo EL, Juba TR, DeHeer CJ (2006) Relative abundance and comparative breeding structure of subterranean termite colonies (Reticulitermes flavipes. Reticulitermes hageni, Reticulitermes virginicus, and Coptotermes formosanus) in a South Carolina lowcountry site as revealed by molecula. Ann Entomol Soc Am 99:1101–1109CrossRefGoogle Scholar
  59. Vargo EL, Leniaud L, Swoboda LE et al (2013) Clinal variation in colony breeding structure and level of inbreeding in the subterranean termites Reticulitermes flavipes and R. grassei. Mol Ecol 22:1447–1462. doi: 10.1111/mec.12166 CrossRefPubMedGoogle Scholar
  60. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evol Int J org Evol 38:1358–1370Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.IRBI, UMR 7261 CNRS-Université François RabelaisToursFrance
  2. 2.EBI, UMR 7267 CNRS-Université de PoitiersPoitiersFrance
  3. 3.LBLGC, INRA, Université d’OrléansOrléansFrance
  4. 4.CEFE, UMR 5175, CNRS-Université de Montpellier-Université Paul Valéry Montpellier-EPHEMontpellierFrance

Personalised recommendations