, Volume 144, Issue 5, pp 523–533 | Cite as

Fine mapping and genetic association analysis of Net2, the causative D-genome locus of low temperature-induced hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii

  • Kouhei Sakaguchi
  • Ryo Nishijima
  • Julio Cesar Masaru Iehisa
  • Shigeo TakumiEmail author


Hybrid necrosis has been observed in many interspecific hybrids from crosses between tetraploid wheat and the wheat D-genome donor Aegilops tauschii. Type II necrosis is a kind of hybrid incompatibility that is specifically characterized by low-temperature induction and growth suppression. Two complementary genes, Net1 on the AB genome and Net2 on the D genome, putatively control type II necrosis in ABD triploids and synthetic hexaploid wheat. Toward map-based cloning of Net2, a fine map around the Net2 region on 2DS was constructed in this study. Using the draft genome sequence of Ae. tauschii and the physical map of the barley genome, the Net2 locus was mapped within a 0.6 cM interval between two closely linked markers. Although local chromosomal rearrangements were observed in the Net2-corresponding region between the barley/Brachypodium and Ae. tauschii genomes, the two closely linked markers were significantly associated with type II necrosis in Ae. tauschii. These results suggest that these markers will aid efficient selection of Net2 non-carrier individuals from the Ae. tauschii population and intraspecific progeny, and could help with introgression of agriculturally important genes from Ae. tauschii to common wheat.


Allopolyploid evolution Chromosome synteny Hybrid incompatibility Single nucleotide polymorphism Wheat 



We thank Dr. Yoshihiro Matsuoka for his providing of the genotyping data of the 83 Ae. tauschii accessions and Dr. Kentaro Yoshida for his critical reading of the manuscript. This work was supported by grants from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan (Grant-in-Aid for Scientific Research (B) Nos. 25292008 and 16H04862).

Supplementary material

10709_2016_9920_MOESM1_ESM.pdf (91 kb)
Supplementary material 1 (PDF 90 kb)


  1. Alcázar R, García AV, Parker JE, Reymond M (2009) Incremental steps toward incompatibility revealed by Arabidopsis epistatic interactions modulating salicylic acid pathway activation. Proc Natl Acad Sci USA 106:334–339CrossRefPubMedGoogle Scholar
  2. Alcázar R, García AV, Kronholm I, de Meaux J, Koornneef M, Parker JE, Reymond M (2010) Natural variation at Strubbelig Receptor Kinase 3 drives immune-triggered incompatibilities between Arabidopsis thaliana accessions. Nat Genet 42:1135–1139CrossRefPubMedGoogle Scholar
  3. Bomblies K, Lempe J, Epple P, Warthmann N, Lanz C, Dangl JL, Weigel D (2007) Autoimmune response as a mechanism for Dobzhansky-Muller-type incompatibility syndrome in plants. PLoS Biol 5:e236CrossRefPubMedPubMedCentralGoogle Scholar
  4. Borrill P, Adamski N, Uauy C (2015) Genomics as the key to unlocking the polyploid potential of wheat. New Phytol 208:1008–1022CrossRefPubMedGoogle Scholar
  5. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635CrossRefPubMedGoogle Scholar
  6. Chu CG, Faris JD, Friesen TL, Xu SS (2006) Molecular mapping of hybrid necrosis genes Ne1 and Ne2 in hexaploid wheat using microsatellite markers. Theor Appl Genet 112:1374–1381CrossRefPubMedGoogle Scholar
  7. Dvorak J, Luo MC, Yang ZL, Zhang HB (1998) The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670CrossRefGoogle Scholar
  8. Hatano H, Mizuno N, Matsuda R, Shitsukawa N, Park P, Takumi S (2012) Dysfunction of mitotic cell division at shoot apices triggered severe growth abortion in interspecific hybrids between tetraploid wheat and Aegilops tauschii. New Phytol 194:1143–1154CrossRefPubMedGoogle Scholar
  9. Hirao K, Nishijima R, Sakaguchi K, Takumi S (2015) Fine mapping of Hch1, the causal D-genome gene for hybrid chlorosis in interspecific crosses between tetraploid wheat and Aegilops tauschii. Genes Genet Syst 90:283–291CrossRefPubMedGoogle Scholar
  10. Iehisa JCM, Shimizu A, Sato K, Nasuda S, Takumi S (2012) Discovery of high-confidence single nucleotide polymorphisms from large-scale de novo analysis of leaf transcripts of Aegilops tauschii, a wild wheat progenitor. DNA Res 19:487–497CrossRefPubMedPubMedCentralGoogle Scholar
  11. Iehisa JCM, Shimizu A, Sato K, Nishijima R, Sakaguchi K, Matsuda R, Nasuda S, Takumi S (2014) Genome-wide marker development for the wheat D genome based on single nucleotide polymorphisms identified from transcripts in the wild wheat progenitor Aegilops tauschii. Theor Appl Genet 127:261–271CrossRefPubMedGoogle Scholar
  12. International Barley Genome Sequencing Consortium, Mayer KF, Waugh R, Brown JW, Schulman A, Langridge P, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Close TJ, Wise RP, Stein N (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716Google Scholar
  13. Jia J, Zhao S, Kong X, Li Y, Zhao G, He W, Appels R, Pfeifer M, Tao Y, Zhang X, Jing R, Zhang C, Ma Y, Gao L, Gao C, Spannagl M, Mayer KFX, Li D, Pan S, Zheng F, Hu Q, Xia X, Li J, Liang Q, Chen J, Wicker T, Gou C, Kuang H, He G, Luo Y, Keller B, Xia Q, Lu P, Wang J, Zou H, Zhang R, Gao J, Middleton C, Quan Z, Liu G, Wang J, International Wheat Genome Sequencing Consortium, Yang H, Liu X, He Z, Mao L, Wang J (2013) Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation. Nature 496:91–95CrossRefPubMedGoogle Scholar
  14. Jones H, Gosman N, Horsnell R, Rose GA, Everest LA, Bentley AR, Tha S, Uauy C, Kowalski A, Novoselovic N, Simek R, Kobiljski B, Kondic-Spika A, Brbaklic L, Mitrofanova O, Chesnokov Y, Bonnett D, Greenland A (2013) Strategy for exploiting exotic germplasm using genetic, morphological, and environmental diversity: the Aegilops tauschii Coss. example. Theor Appl Genet 126:1793–1808CrossRefPubMedGoogle Scholar
  15. Kajimura T, Murai K, Takumi S (2011) Distinct genetic regulation of flowering time and grain-filling period based on empirical study of D-genome diversity in synthetic hexaploid wheat lines. Breed Sci 61:130–141CrossRefGoogle Scholar
  16. Kihara H, Lilienfeld F (1949) A new synthesized 6x-wheat. Hereditas (Supplemental Volume):307–319Google Scholar
  17. Kofler R, Schlötterer C, Lelley T (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23:1683–1685CrossRefPubMedGoogle Scholar
  18. Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175CrossRefGoogle Scholar
  19. Lander ES, Green P, Abrahamson J (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181CrossRefPubMedGoogle Scholar
  20. Lin Z, Yin K, Zhu D, Chen Z, Gu H, Qu LJ (2007) AtCDC5 regulates the G2 to M transition of the cell cycle and is critical for the function of Arabidopsis shoot apical meristem. Cell Res 17:815–828CrossRefPubMedGoogle Scholar
  21. Luo MC, Gu YQ, You FM, Deal KR, Ma Y, Hu Y, Huo N, Wang Y, Wang J, Chen S, Jorgensen CM, Zhang Y, McGuire PE, Pasternak S, Stein JC, Ware D, Kramer M, McCombie WR, Kianian SF, Martis MM, Mayer KFX, Sehgal SK, Li W, Gill BS, Bevan MW, Šimková H, Doležel J, Weining S, Lazo GR, Anderson OD, Dvorak J (2013) A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii, the wheat D-genome progenitor. Proc Natl Acad Sci USA 110:7940–7945CrossRefPubMedPubMedCentralGoogle Scholar
  22. Matsuda R, Iehisa JCM, Takumi S (2012) Application of real-time PCR-based SNP detection for mapping of Net2, a causal D-genome gene for hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii. Gene Genet Syst 87:137–143CrossRefGoogle Scholar
  23. Matsuoka Y (2011) Evolution of polyploid Triticum wheats under cultivation: the role of domestication, natural hybridization and allopolyploid speciation in their diversification. Plant Cell Physiol 52:750–764CrossRefPubMedGoogle Scholar
  24. Matsuoka Y, Nasuda S (2004) Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor Appl Genet 109:1710–1717CrossRefPubMedGoogle Scholar
  25. Matsuoka Y, Takumi S, Kawahara T (2007) Natural variation for fertile triploid F1 formation in allohexaploid wheat speciation. Theor Appl Genet 115:509–518CrossRefPubMedGoogle Scholar
  26. Matsuoka Y, Takumi S, Kawahara T (2008) Flowering time diversification and dispersal in central Eurasian wild wheat Aegilops tauschii Coss.: genealogical and ecological framework. PLoS ONE 3:e3138CrossRefPubMedPubMedCentralGoogle Scholar
  27. Matsuoka Y, Nishioka E, Kawahara T, Takumi S (2009) Genealogical analysis of subspecies divergence and spikelet-shape diversification in Central Eurasian wild wheat Aegilops tauschii Coss. Plant Syst Evol 279:233–244CrossRefGoogle Scholar
  28. Matsuoka Y, Nasuda S, Ashida Y, Nitta M, Tsujimoto H, Takumi S, Kawahara T (2013) Genetic basis for spontaneous hybrid genome doubling during allopolyploid speciation of common wheat shown by natural variation analyses of the paternal species. PLoS ONE 8:e68310CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mayer KFX, Martis M, Hedley PE, Simkova H, Liu H, Morris JA, Steuernagel B, Taudien S, Roesner S, Gundlach H, Kubaláková M, Suchánková P, Murat F, Felder M, Nussbaumer T, Graner A, Salse J, Endo T, Sakai H, Tanaka T, Itoh T, Sato K, Platzer M, Matsumoto T, Scholz U, Dolezel J, Waugh R, Stein N (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mizuno N, Hosogi N, Park P, Takumi S (2010) Hypersensitive response-like reaction is associated with hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii Coss. PLoS ONE 5:e11326CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mizuno N, Shitsukawa N, Hosogi N, Park P, Takumi S (2011) Autoimmune response and repression of mitotic cell division occur in inter-specific crosses between tetraploid wheat and Aegilops tauschii Coss. that show low temperature-induced hybrid necrosis. Plant J 68:114–128CrossRefPubMedGoogle Scholar
  32. Mujeeb-Kazi A, Rosas V, Roldan S (1996) Conservation of the genetic variation of Triticum tauschii (Coss.) Schmalh. (Aegilops squarrosa auct. non L.) in synthetic hexaploid wheats (Triticum turgidum L. x T. tauschii; 2n = 6x = 42, AABBDD) and its potential utilization for wheat improvement. Genet Res Crop Evol 43:129–134CrossRefGoogle Scholar
  33. Nakano H, Mizuno N, Tosa Y, Yoshida K, Park P, Takumi S (2015) Accelerated senescence and enhanced disease resistance in hybrid chlorosis lines derived from interspecific crosses between tetraploid wheat and Aegilops tauschii. PLoS ONE 10:e0121583CrossRefPubMedPubMedCentralGoogle Scholar
  34. Nishijima R, Iehisa JCM, Matsuoka Y, Takumi S (2014) The cuticular wax inhibitor locus Iw2 in wild diploid wheat Aegilops tauschii: phenotypic survey, genetic analysis, and implications for the evolution of common wheat. BMC Plant Biol 14:246CrossRefPubMedPubMedCentralGoogle Scholar
  35. Nishikawa K (1960) Hybrid lethality in crosses between emmer wheats and Aegilops squarrosa, I. Vitality of F1 hybrids between emmer wheats and Ae. squarrosa var. typica. Seiken Ziho 11:21–28Google Scholar
  36. Nishikawa K (1962) Hybrid lethality in crosses between emmer wheats and Aegilops squarrosa, III. Gene analysis of type-2 necrosis. Seiken Ziho 14:45–50Google Scholar
  37. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  38. Takumi S, Mizuno N (2011) Low temperature-induced necrosis shows phenotypic plasticity in wheat triploid hybrids. Plant Signal Behav 6:1431–1433CrossRefPubMedPubMedCentralGoogle Scholar
  39. Takumi S, Nishioka E, Morihiro H, Kawahara T, Matsuoka Y (2009) Natural variation of morphological traits in wild wheat progenitor Aegilops tauschii Coss. Breed Sci 59:579–588CrossRefGoogle Scholar
  40. The International Brachypodium Initiative (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768CrossRefGoogle Scholar
  41. Tsunewaki K (1960) Monosomic and conventional gene analysis in common wheat. III. Lethality. Jpn J Genet 35:594–601CrossRefGoogle Scholar
  42. Tsunewaki K (1966) Comparative gene analysis of common wheat and its ancestral species. II. Waxiness, growth habit and awnedness. Jpn J Bot 19:175–229Google Scholar
  43. Wang C, Liu Z (2006) Arabidopsis ribonucleotide reductases are critical for cell cycle progression, DNA damage repair, and plant development. Plant Cell 18:350–365CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wang J, Luo MC, Chen Z, You FM, Wei Y, Zheng Y, Dvorak J (2013) Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol 198:925–937CrossRefPubMedGoogle Scholar
  45. Yamamoto E, Takashi T, Morinaka Y, Lin S, Wu J, Matsumoto T, Kitano H, Matsuoka M, Ashikari M (2010) Gain of deleterious function caused an autoimmune response and Bateson–Dobzhansky–Muller incompatibility in rice. Mol Genet Genomics 283:305–315CrossRefPubMedGoogle Scholar
  46. Zhang P, Hiebert CW, McIntosh RA, McCallum BD, Thomas JB, Hoxha S, Singh D, Bansal U (2016) The relationship of leaf rust resistance gene Lr13 and hybrid necrosis gene Ne2m on wheat chromosome 2BS. Theor Appl Genet 129:485–493CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Kouhei Sakaguchi
    • 1
  • Ryo Nishijima
    • 1
  • Julio Cesar Masaru Iehisa
    • 1
  • Shigeo Takumi
    • 1
    Email author
  1. 1.Graduate School of Agricultural ScienceKobe UniversityKobeJapan

Personalised recommendations