Advertisement

Genetica

, Volume 144, Issue 4, pp 407–415 | Cite as

First description of multivalent ring structures in eutherian mammalian meiosis: new chromosomal characterization of Cormura brevirostris (Emballonuridae, Chiroptera)

  • Ramon Everton Ferreira de Araújo
  • Cleusa Yoshiko Nagamachi
  • Marlyson Jeremias Rodrigues da Costa
  • Renata Coelho Rodrigues Noronha
  • Luís Reginaldo Ribeiro Rodrigues
  • Julio César Pieczarka
Article

Abstract

Twelve specimens of the bat Cormura brevirostris (Emballonuridae: Chiroptera) were collected from four localities in the Brazilian Amazon region and analyzed by classical and molecular cytogenetics. The diploid number and autosomal fundamental number were as previously reported (2n = 22 and FNa = 40, respectively). Fluorescence in situ hybridization using rDNA probes and silver nitrate technique demonstrated the presence of two NOR sites and the presence of internal telomeric sequences at pericentromeric regions of all chromosomes with exception of Y. Based on meiotic studies and chromosome banding we suggest that the sex chromosome pair of C. brevirostris was equivocally identified as it appears in the literature. Meiotic analysis demonstrated that at diplotene–diakinesis the cells had a ring conformation involving four chromosome pairs. This suggests the occurrence of multiple reciprocal translocations among these chromosomes, which is a very rare phenomenon in vertebrates, and has never been described in Eutheria.

Keywords

Chromosomes Bat Meiotic multivalent Multiple translocations Biodiversity 

Notes

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and the Fundação de Amparo à Pesquisa do Pará (FAPESPA) for financial supports on projects coordinated by CY Nagamachi (Edital BIONORTE-CNPq, Proc 552032/2010-7; Edital BIONORTE-FAPESPA, ICAAF 007/2011); the FAPESPA (Edital Vale – Proc 2010/110447) and BNDES (Operacão 2.318.697.0001) on Projects coordinated by JCP. CYN (308428/2013-7) and JCP (308401/2013-1) are granted as CNPq researchers. The Biodinâmica Rio and Aotus Consultoria Ambiental for financial support for the field research; Eloíza Soares and Talita Ribas for assistance in the fieldwork; and the Escola da Floresta (SEMED/SMT) in Alter do Chão, Santarém-PA, for logistical support during the field work. Sample collections were authorized by Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio) and Secretaria de Estado de Meio Ambiente do Pará (SEMA-PA).

References

  1. Ao L, Mao X, Nie W, Gu X, Feng Q, Wang J, Su W, Wang Y, Volleth M, Yang F (2007) Karyotypic evolution and phylogenetic relationships in the order Chiroptera as revealed by G-banding comparison and chromosome painting. Chromosome Res 15:257–267PubMedGoogle Scholar
  2. Baker R, Jordan RG (1970) Chromosomal studies of neotropical bats of the families Emballonuridae, Noctilionidae, Natalidae and Vespertilionidae. Caryologia 23:595–604CrossRefGoogle Scholar
  3. Baker RJ, Jones JK Jr (1975) Additional records of bats from Nicaragua, with a revised checklist of Chiroptera. Occ Pap Mus Tex Tech Univ 32:1–13Google Scholar
  4. Baker RJ, Genoways HH, Seyfarth PA (1981) Results of the Alcoa Foundation - Suriname expeditions. VI. Additional chromosomal data for bats (Mammalia: Chiroptera) from Suriname. Ann Carnegie Mus Nat, Hist 50:333–344Google Scholar
  5. Baker RJ, Haiduk MW, Robbins LW, Cadena A, Koop BF (1982) Chromosomal studies of South American bats and their systematic implications. ln: Mares MA, Genoways HH (eds) Mammalian biology in South America, Vol. 4. Special Publication Series, Pymatuning Laboratory of Ecology, University of Pittsburgh, Penn., pp 303–327Google Scholar
  6. Baker RJ, Maltbie M, Owen JG, Hamilton M, Bradley RD (1992) Reduced number of ribosomal sites in bats: evidence for a mechanism to contain genome size. J Mammal 73:847–858CrossRefGoogle Scholar
  7. Bernard E (2001) Vertical stratification of bat communities in primary forest of central Amazon, Brazil. J Trop Ecol 17:115–126CrossRefGoogle Scholar
  8. Eicher E (1966) An improve air-drying technique for recovery of all stages of meiosis in the mammalian testis. Mamm Chromosome Newsl 20:74Google Scholar
  9. Ford CE, Hamerton JL (1956) A colchicine, hypotonic-citrate, squash sequence for mammalian chromosomes. Stain Technol 31:247–251CrossRefPubMedGoogle Scholar
  10. Gardner AL (2007) Mammals of South America, vol 1. University of Chicago Press, Chicago, p 669Google Scholar
  11. Gomes AJB, Rodrigues LRR, Rissino JD, Nagamachi CY, Pieczarka JC (2010) Biogeographical karyotypic variation of Rhinophylla fischerae (Chiroptera: Phyllostomidae) suggests the occurrence of cryptic species. Comp Cytogenet 4:79–85CrossRefGoogle Scholar
  12. Gomes AJB, Nagamachi CY, Rodrigues LRR, Farias SG, Rissino JD, Pieczarka JC (2012) Karyotypic variation in Rhinophylla pumilio Peters, 1865 and comparative analysis with representatives of two subfamilies of Phyllostomidae (Chiroptera). Comp Cytogenet 6:213–225CrossRefPubMedPubMedCentralGoogle Scholar
  13. Grenbaum F, Jones JK Jr (1978) Noteworthy records of bats from EI Salvador, Honduras and Nicaragua. Occas Papers Mus Texas Tech Univ 55:1–7Google Scholar
  14. Gross MC, Feldberg E, Cella DM, Schneider MC, Schneider CH, Porto JIR, Martins C (2009) Intriguing evidence of translocations in Discus fish (Symphysodon, Cichlidae) and a report of the largest meiotic chromosomal chain observed in vertebrates. Heredity 102:435–441CrossRefPubMedGoogle Scholar
  15. Handel MA (2004) The XY body: a specialized meiotic chromatin domain. Exp Cell Res 296:57–63CrossRefPubMedGoogle Scholar
  16. Honeycutt RL, Baker RJ, Genoways HH (1980) Results of the Alcoa Foundation. Suriname expeditions. III. Chromosomal data for bats (Mammalia: Chiroptera) from Suriname. Ann Carnegie Mus 49:237–250Google Scholar
  17. Hood CS, Baker RJ (1986) G- and C-banding chromosomal studies of bats of the family Emballonuridae. J Mammal 67:705–711CrossRefGoogle Scholar
  18. Howell WM, Black DA (1980) Controlled silver-staining of nucleolar organizer regions with protective colloidal developer: a 1-step method. Experientia 36:1014–1015CrossRefPubMedGoogle Scholar
  19. Luykx P, Siren RM (1981) Multiple sex-linked reciprocal translocations in a termite from Jamaica. Experientia 37:819–820CrossRefGoogle Scholar
  20. Mao X, Nie W, Wang J, Su W, Feng Q, Wang Y, Dobigny G, Yang F (2008) Comparative cytogenetics of bats (Chiroptera): the prevalence of Robertsonian translocations limits the power of chromosomal characters in resolving interfamily phylogenetic relationships. Chromosome Res 16:155–170CrossRefPubMedGoogle Scholar
  21. Martins C, Galetti PM Jr (1998) Karyotype similarity between two sympatric Schizodon fish species (Anostomidae, Characiformes) from Paraguay River basin. Genet Mol Biol 21:355–360CrossRefGoogle Scholar
  22. Multani AS, Ozen M, Furlong CL, Zhao YJ, Hsu TC, Pathak S (2001) Heterochromatin and interstitial telomeric DNA homology. Chromosoma 10:214–220CrossRefGoogle Scholar
  23. Neves ACB, Pieczarka JC, Barros RMS, Marques-Aguiar S, Rodrigues LRR, Nagamachi CY (2000) Cytogenetic studies on Choeroniscus minor (Chiroptera, Phyllostomidae) from the Amazon region. Cytobios 105:91–98Google Scholar
  24. Noronha RCR, Nagamachi CY, O’Brien PCM, Ferguson-Smith MA, Pieczarka JC (2009) Neo-XY body: an analysis of XY1Y2 meiotic behavior in Carollia (Chiroptera, Phyllostomidae) by chromosome painting. Cytogenet Genome Res 124:37–43CrossRefPubMedGoogle Scholar
  25. Noronha RCR, Nagamachi CY, O’Brien PCM, Ferguson-Smith MA, Pieczarka JC (2010) Meiotic analysis of XX/XY and neo-XX/XY sex chromosomes in Phyllostomidae by cross-species chromosome painting revealing a common chromosome 15-XY rearrangement in Stenodermatinae. Chromosome Res 18:667–676CrossRefPubMedGoogle Scholar
  26. Pieczarka JC, Nagamachi CY, O’Brien PCM, Yang F, Ren W, Barros RMS, Noronha RCR, Rissino J, Oliveira EHC, Ferguson-Smith MA (2005) Reciprocal chromosome painting between two South American bats: carollia brevicauda and Phyllostomus hastatus (Phyllostomidae, Chiroptera). Chromosome Res 13:339–347CrossRefPubMedGoogle Scholar
  27. Pieczarka JC, Gomes AJB, Nagamachi CY, Rocha DCC, Rissino JD, O’Brien PC et al (2013) A phylogenetic analysis using multidirectional chromosome painting of three species (Uroderma magnirostrum, U. bilobatum and Artibeus obscurus) of subfamily Stenodermatinae (Chiroptera-Phyllostomidae). Chromosome Res 21:383–392CrossRefPubMedGoogle Scholar
  28. Reis NR dos, Peracchi AL, Pedro WA, de Lima IP (2007) Morcegos do Brasil. Editora da Universidade Estadual de Londrina, LondrinaGoogle Scholar
  29. Rens W, Grützner F, O’Brien PCM, Fairclough H, Graves JAM, Ferguson-Smith MA (2004) Resolution and evolution of the duck-billed platypus karyotype with an X1Y1X2Y2X3Y3X4Y4X5Y5 male sex chromosome constitution. Proc Natl Acad Sci USA 101:16257–16261CrossRefPubMedPubMedCentralGoogle Scholar
  30. Rens W, O’Brien PCM, Grutzner F, Clarke O, Graphodatsky D, Tsend-Ayush E, Trifonov V, Skelton H, Wallis MC, Johnston S, Veyrunes F, Graves JAM, Ferguson-Smith MA (2007) The multiple sex chromosomes of platypus and echidna are not completely identical and several share homology with the avian Z. Genome Biol (Online Edition) 8:1–14Google Scholar
  31. Ribas TFA, Rodrigues LRR, Nagamachi CY, Gomes AJB, Rissino JD, Benathar TCM, O’Brien PCM, Yang F, Ferguson-Smith MA, Pieczarka JC (2013) Two new cytotypes reinforce that Micronycteris hirsuta Peters, 1869 does not represent a monotypic taxon. BMC Genet 14:1–10CrossRefGoogle Scholar
  32. Ribas TFA, Rodrigues LRR, Nagamachi CY, Gomes AJB, Rissino JD, O’Brien PCM, Yang F, Ferguson-Smith MA, Pieczarka JC (2015) Phylogenetic reconstruction by cross-species chromosome painting and G-banding in four species of Phyllostomini Tribe (Chiroptera, Phyllostomidae) in the Brazilian Amazon: an independent evidence for monophyly. Plos One 10:1–16CrossRefGoogle Scholar
  33. Ribeiro NAB, Nagamachi CY, Pieczarka JC, Rissino JD, Neves ACB, Gonçalves ACO, Marques-Aguiar S, Barros RMS (2003) Cytogenetic analysis in species of the Subfamily Glossophaginae (Phyllostomidae-Chiroptera) supports a polyphyletic origin. Caryologia 56:85–95CrossRefGoogle Scholar
  34. Rodrigues LRR, Barros RMS, Assis MFL, Marques-Aguiar S, Pieczarka JC, Nagamachi CY (2000) Chromosome comparison between two species of Phyllostomus (Chiroptera – Phyllostomidae) from Eastern Amazonia, with some phylogenetic insights. Genet Mol Biol 23:595–599CrossRefGoogle Scholar
  35. Rodrigues LRR, Barros RMS, Assis MFL, Marques-Aguiar S, Pieczarka JC, Nagamachi CY (2003) Comparative cytogenetics of two phyllostomids bats. A new hypothesis to the origin of the rearranged X chromosome from Artibeus lituratus. Caryologia 56:413–419CrossRefGoogle Scholar
  36. Sapienza C, De Villena PM (2001) Female meiosis drives karyotypic evolution in mammals. Genetics 159:1179–1189PubMedPubMedCentralGoogle Scholar
  37. Seabright M (1971) A rapid technique for human chromosomes. Lancet 2:971–972CrossRefPubMedGoogle Scholar
  38. Silva AM, Marques-Aguiar S, Barros RMS, Nagamachi CY, Pieczarka JC (2005) Comparative cytogenetics analysis in the species Uroderma magnirostrum and U. bilobatum (cytotype 2n = 42) (Phyllostomidae, Stenodermatinae) in the Brazilian Amazon. Genet Mol Biol 28:248–253CrossRefGoogle Scholar
  39. Simmons N (2005) Order Chiroptera. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. John Hopkins University Press, BaltimoreGoogle Scholar
  40. Simmons NB, Geisleir JH (1998) Phylogenetic relationships of Icaronycteris, Archeonycteris, Hassianycteris and Palaeochiropteryx to extant bat lineages, with comments on the evolution of echolocation and foraging strategies in Microchiroptera. Bull Am Mus Nat Hist 235:1–82Google Scholar
  41. Simmons NB, Voss RS (1998) The mammals of Paracou, French Guiana: a Neotropical lowland rainforest fauna. Part 1. Bats. Bull Am Mus Nat Hist 237:1–219Google Scholar
  42. Siqueira-Jr S, Ananias F, Recco-Pimentel S (2004) Cytogenetics of three Brazilian species of Eleutherodactylus (Anura: leptodactylidae) with 22 chromosomes and reanalysis of multiple translocations in E. binotatus. Genet Mol Biol 27:363–372CrossRefGoogle Scholar
  43. Solari AJ (1994) Sex chromosomes and sex determination in vertebrates. CRC Press, Boca RatonGoogle Scholar
  44. Sotero-Caio CG, Pieczarka JC, Nagamachi CY, Gomes AJB, Lira TC, O’Brien PCM, Ferguson-Smith MA, Souza MJ, Santos N (2011) Chromosomal homologies among vampire bats revealed by chromosome painting (Phyllostomidae, Chiroptera). Cytogenet Genome Res 132:156–164CrossRefPubMedGoogle Scholar
  45. Springer MS, Teeling EC, Madsen O, Stanhope MJ, de Jong WW (2001) Integrated fossil and molecular data reconstruct bat echolocation. Proc Natl Acad Sci USA 98:6241–6246CrossRefPubMedPubMedCentralGoogle Scholar
  46. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306CrossRefPubMedGoogle Scholar
  47. Volleth M, Heller KG, Pfeiffer RA, Hameister H (2002) Comparative ZOO-FISH analysis in bats elucidates the phylogenetic relationships between Megachiroptera and five microchiropteran families. Chromosome Res 10:477–497CrossRefPubMedGoogle Scholar
  48. Wiens D, Barlow BA (1975) Permanent translocation heterozygosity and sex determination in East African mistletoes. Science 187:1208–1209CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Ramon Everton Ferreira de Araújo
    • 1
    • 3
  • Cleusa Yoshiko Nagamachi
    • 1
    • 2
  • Marlyson Jeremias Rodrigues da Costa
    • 1
  • Renata Coelho Rodrigues Noronha
    • 1
    • 2
  • Luís Reginaldo Ribeiro Rodrigues
    • 4
    • 5
  • Julio César Pieczarka
    • 1
    • 2
  1. 1.Laboratório de Citogenética, Centro de Estudos Avançados da Biodiversidade, Instituto de Ciências BiológicasUFPA-BelémBairro Guamá, BelémBrazil
  2. 2.CNPq ResearcherBrasíliaBrazil
  3. 3.CAPES Doctorship Scholarship –Neuroscience and Cellular Biology - UFPABelémBrazil
  4. 4.Laboratório de Genética and Biodiversidade, Instituto de Ciências da EducaçãoUniversidade Federal do Oeste do ParáSantarémBrazil
  5. 5.PPG Recursos Naturais da Amazônia - UFOPASantarémBrazil

Personalised recommendations