Skip to main content
Log in

Genetic variability in captive populations of the stingless bee Tetragonisca angustula

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Low genetic variability has normally been considered a consequence of animal husbandry and a major contributing factor to declining bee populations. Here, we performed a molecular analysis of captive and wild populations of the stingless bee Tetragonisca angustula, one of the most commonly kept species across South America. Microsatellite analyses showed similar genetic variability between wild and captive populations However, captive populations showed lower mitochondrial genetic variability. Male-mediated gene flow, transport and division of nests are suggested as the most probable explanations for the observed patterns of genetic structure. We conclude that increasing the number of colonies kept through nest divisions does not negatively affect nuclear genetic variability, which seems to be maintained by small-scale male dispersal and human-mediated nest transport. However, the transport of nests from distant localities should be practiced with caution given the high genetic differentiation observed between samples from western and eastern areas. The high genetic structure verified is the result of a long-term evolutionary process, and bees from distant localities may represent unique evolutionary lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agoze ME, Drezen JM, Renault S, Periquet G (1994) Analysis of the reproductive potential of diploid males in the wasp Diadromus pulchellus (Hymenoptera: Ichneumonidae). Bull Entomol Res 84:213–218

    Article  Google Scholar 

  • Allendorf F, Luikart G, Aitken S (2012) Conservation and the genetics of populations. Wiley-Blackwell, Oxford

    Google Scholar 

  • Alves DA, Imperatriz-Fonseca VL, Francoy TM, Santos-Filho PS, Billen J, Wenseleers T (2011) Successful maintenance of a stingless bee population despite a severe genetic bottleneck. Conserv Genet 12:647–658

    Article  Google Scholar 

  • Antunes OT, Calvete EO, Rocha HC, Nienow AA, Cecchetti D, Riva E, Maran RE (2007) Produção de cultivares de morangueiro polinizadas pela abelha jataí em ambiente protegido. Hortic Bras 25:94–99

    Article  Google Scholar 

  • Asada S, Ono M (1997) Tomato pollination with Japanese native bumblebees (Bombus spp.). Acta Hortic 437:289–292

    Article  Google Scholar 

  • Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Beye M, Hasselmann M, Fondrk MK, Page RE, Omholt SW (2003) The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114:419–429

    Article  CAS  PubMed  Google Scholar 

  • Bloch G, Francoy TM, Wachtel I, Panitz-Cohen N, Fuchs S, Mazar A (2010) Industrial apiculture in the Jordan valley during Biblical times with Anatolian honeybees. Proc Natl Acad Sci 107:11240–11244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonatti V, Simões ZLP, Franco FF, Francoy TM (2014) Evidence of at least two evolutionary lineages in Melipona subnitida (Apidae, Meliponini) suggested by mtDNA variability and geometric morphometrics of forewings. Naturwissenschaften 101:17–24

    Article  CAS  PubMed  Google Scholar 

  • Brito RM, Arias MC (2010) Genetic structure of Partamona helleri (Apidae, Meliponini) from Neotropical Atlantic rainforest. Insectes Sociaux 57:413–419

    Article  Google Scholar 

  • Brito RM, Francisco FO, Domingues-Yamada AMT, Gonçalves PHP, Pioker FC, Soares AEE, Arias MC (2009) Characterization of microsatellite loci of Tetragonisca angustula (Hymenoptera, Apidae, Meliponini). Conserv Genet Resour 1:183–187

    Article  Google Scholar 

  • Brito RM, Francisco FO, Françoso E, Santiago LR, Arias MC (2013) Very low mitochondrial variability in a stingless bee endemic to cerrado. Genet Mol Biol 128:124–128

    Article  Google Scholar 

  • Brosi BJ (2009) The complex responses of social stingless bees (Apidae: Meliponini) to tropical deforestation. For Ecol Manag 258:1830–1837

    Article  Google Scholar 

  • Bruening MH (1990) Abelha jandaira. Coleção Mossoroense, Mossoró

    Google Scholar 

  • Bruford MW, Bradley DG, Luikart G (2003) DNA markers reveal the complexity of livestock domestication. Nat Rev Genet 4:900–910

    Article  CAS  PubMed  Google Scholar 

  • Byatt MA, Chapman NC, Latty T, Oldroyd BP (2015) The genetic consequences of the anthropogenic movement of social bees. Insectes Sociaux 63:15–24

    Article  Google Scholar 

  • Calvete EO, Rocha HC, Cechetti D, Marari RE, Carli W (2003) Polinização entomófila de morangueiro cultivado em ambiente protegido. Hortic Bras 21:281

    Google Scholar 

  • Cameron EC, Franck P, Oldroyd BP (2004) Genetic structure of nest aggregations and drone congregations of the southeast Asian stingless bee Trigona collina. Mol Ecol 13:2357–2364

    Article  CAS  PubMed  Google Scholar 

  • Cane JH (1997) Ground-nesting bees: the neglected pollinator resource for agriculture. Acta Hortic 437:309–324

    Article  Google Scholar 

  • Carneiro M, Afonso S, Geraldes A, Garreau H, Bolet G, Boucher S, Tircazes A, Queney G, Nachman MW, Ferrand N (2011) The genetic structure of domestic rabbits. Mol Biol Evol 28:1801–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho-Zilse GA, Kerr WE (2004) Substituição natural de rainhas fisogástricas e distância de vôo dos machos em Tiuba (Melipona compressipes fasciculata Smith, 1854) e Uruçu (Melipona scutellaris Latreille, 1811) (Apidae, Meliponini). Acta Amaz 34:649–652

    Article  Google Scholar 

  • Carvalho-Zilse GA, Costa-Pinto MFF, Nunes-Silva CG, Kerr WE (2009) Does beekeeping reduce genetic variability in Melipona scutellaris (Apidae, Meliponini)? Genet Mol Res 8:758–765

    Article  CAS  PubMed  Google Scholar 

  • Chiari WC, Attencia VM, Fritzen AET, Toledo VAA, Terada Y, Ruvolo-Takasusuki MCC, Toral FLB, Paiva GJ (2002) Avaliação de diferentes modelos de colméias para abelhas jataí (Tetragonisca angustula Latreille, 1811). Maringá 24:881–887

    Google Scholar 

  • Clutton-Brock J (1999) A natural history of domesticated mammals. Cambridge University Press, Cambridge

    Google Scholar 

  • Cornuet J-M, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cortopassi-Laurino M (2007) Drone congregations in Meliponini: what do they tell us? Biosci J 23:153–160

    Google Scholar 

  • Cortopassi-Laurino M, Imperatriz-Fonseca VL, Roubik DW, Dollin A, Heard T, Aguilar IB, Venturieri GC, Eardley C, Nogueira-Neto P (2006) Global meliponiculture: challenges and opportunities. Apidologie 37:275–292

    Article  Google Scholar 

  • Crane E (1983) The archaeology of beekeeping. Cornell University Press, Ithaca

    Google Scholar 

  • Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci 91:3166–3170

    Article  PubMed  PubMed Central  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Fioravanti C (2010) As asas dos alimentos: abelhas ganham valor na produção agrícola. Pesquisa FAPESP 171:53–55

    Google Scholar 

  • Francisco FO, Arias MC (2010) Inferences of evolutionary and ecological events that influenced the population structure of Plebeia remota, a stingless bee from Brazil. Apidologie 41:216–224

    Article  CAS  Google Scholar 

  • Francisco FO, Brito RM, Santiago LR, Gonçalves PHP, Pioker FC, Domingues-Yamada AMT, Arias MC (2011) Isolation and characterization of 15 microsatellite loci in the stingless bee Plebeia remota (Apidae: Meliponini). Conserv Genet Resour 3:417–419

    Article  Google Scholar 

  • Francisco FO, Santiago LR, Arias MC (2013) Molecular genetic diversity in populations of the stingless bee Plebeia remota: a case study. Genet Mol Biol 123:118–123

    Article  Google Scholar 

  • Francisco FO, Santiago LR, Brito RM, Oldroyd BP, Arias MC (2014) Hybridization and asymmetric introgression between Tetragonisca angustula and Tetragonisca fiebrigi. Apidologie 45:1–9

    Article  Google Scholar 

  • Francisco FO, Santiago LR, Mizusawa YM, Oldroyd BP, Arias MC (2015) Genetic structure of the stingless bee Tetragonisca angustula. bioRxiv. doi:10.1101/026740

    Google Scholar 

  • Francisco FO, Santiago LR, Mizusawa YM, Oldroyd BP, Arias MC (2016) Population structuring of the ubiquitous stingless bee Tetragonisca angustula in southern Brazil as revealed by microsatellite and mitochondrial markers. Insect Sci (in press)

  • Giannini TC, Boff S, Cordeiro GD, Cartolano EA Jr, Veiga AK, Imperatriz-Fonseca VL, Saraiva AM (2014) Crop pollinators in Brazil: a review of reported interactions. Apidologie 46:209–223

    Article  Google Scholar 

  • Heard TA (1999) The role of stingless bees in crop pollination. Annu Rev Entomol 44:183–206

    Article  CAS  PubMed  Google Scholar 

  • Hemmer H (1990) Domestication: the decline of environmental appreciation. Cambridge University Press, Cambridge

    Google Scholar 

  • Hogendoorn K, Gross CL, Sedgley M, Keller A (2006) Increased tomato yield through pollination by native Australian Amegilla chlorocyanea (Hymenoptera: Anthophoridae). J Econ Entomol 99:828–833

    Article  PubMed  Google Scholar 

  • Imperatriz-Fonseca VL, Saraiva AM, De Jong D (2006) Bees as pollinators in brazil: assessing the status and suggesting best practices. Holos, Ribeirão Preto

    Google Scholar 

  • Inoue T, Sakagami SF, Salmah S, Yamane S (1984) The process of colony multiplication in the Sumatran stingless bee Trigona (Tetragonula) laeviceps. Biotropica 16:100–111

    Article  Google Scholar 

  • Jaffé R, Pope N, Carvalho A, Maia UM, Blochtein B, Carvalho CAL, Carvalho-Zilse GA, Freitas BM, Menezes C, Ribeiro MF, Venturieri GC, Imperatriz-Fonseca VL (2015) Bees for development: Brazilian survey reveals how to optimize stingless beekeeping. PLoS One 10:e0121157

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerr WE (1997) Meliponicultura. A importância da meliponicultura para o país. Biotecnol Ciênc Desenvolv 1:42–44

    Google Scholar 

  • Klein A-M, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313

    Article  PubMed  Google Scholar 

  • Kraus FB, Weinhold S, Moritz RFA (2008) Genetic structure of drone congregations of the stingless bee Scaptotrigona mexicana. Insectes Sociaux 55:22–27

    Article  Google Scholar 

  • Kremen C, Williams NM, Bugg RL, Fay JP, Thorp RW (2004) The area requirements of an ecosystem service: crop pollination by native bee communities in California. Ecol Lett 7:1109–1119

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Luikart G, Allendorf FW, Cournet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. Am Genet Assoc 89:238–247

    CAS  Google Scholar 

  • MacKenzie K, Javorek S (1997) The potential of alfalfa leafcutter bees (Megachile rotundata L.) as pollinators of cranberry (Vaccinium macrocarponaiton). Acta Hortic 437:345–352

    Article  Google Scholar 

  • May-Itzá WJ, Quezada-Euán JJG, Medina LAM, Enriquez E, De La Rúa P (2010) Morphometric and genetic differentiation in isolated populations of the endangered Mesoamerican stingless bee Melipona yucatanica (Hymenoptera: Apoidea) suggest the existence of a two species complex. Conserv Genet 11:2079–2084

    Article  Google Scholar 

  • Meixner MD, Costa C, Kryger P (2010) Conserving diversity and vitality for honey bee breeding. J Apic Res 49:85–92

    Article  Google Scholar 

  • Mueller MY, Moritz R, Kraus FB (2012) Outbreeding and lack of temporal genetic structure in a drone congregation of the neotropical stingless bee Scaptotrigona mexicana. Ecol Evol 2:1304–1311

    Article  PubMed  PubMed Central  Google Scholar 

  • Muir WM, Wong G-S, Zhang Y, Wang J, Groenen MAM, Crooijmans RPMA, Megens HJ, Zhang H, Okimoto R, Vereijken A, Jungerius A, Albers GAA, Lawley CT, Delany ME, MacEachern S, Cheng HH (2008) Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proc Natl Acad Sci 05:17312–17317

    Article  Google Scholar 

  • Nogueira-Neto P (1954) Notas bionômicas sobre meliponíneos: III—Sobre a enxameagem. Arq Mus Nac 42:419–451

    Google Scholar 

  • Nogueira-Neto P (1997) Vida e Criação de Abelhas Indígenas Sem Ferrão. Nogueirapis, São Paulo

    Google Scholar 

  • Oldroyd BP (2007) What’s killing American honey bees? PLoS Biol 5:e168

    Article  PubMed  PubMed Central  Google Scholar 

  • Orloci L (1978) Multivariate analysis in vegetation research. Springer, New York

    Google Scholar 

  • Page RE (1980) The evolution of multiple mating behavior by honey bee queens (Apis mellifera L.). Genetics 96:263–273

    PubMed  PubMed Central  Google Scholar 

  • Paxton RJ (2000) Genetic structure of colonies and a male aggregation in the stingless bee Scaptotrigona postica, as revealed by microsatellite analysis. Insectes Sociaux 47:63–69

    Article  Google Scholar 

  • Peakall ROD, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Plowright RC, Pallet MJ (1979) Worker-male conflict inbreeding in bumblebees (Hymenoptera: Apidae). Can Entomol 111:289–294

    Article  Google Scholar 

  • Potts SG, Roberts SPM, Dean R, Marris G, Brown MA, Jones R, Neumann P, Settele J (2010) Declines of managed honey bees and beekeepers in Europe. J Apic Res 49:15–22

    Article  Google Scholar 

  • Quezada-Euán JJG, Paxton RJ, Palmer KA, May-Itzá WJ, Tay WT, Oldroyd BP (2007) Morphological and molecular characters reveal differentiation in a Neotropical social bee, Melipona beecheii (Apidae: Meliponini). Apidologie 38:247–258

    Article  Google Scholar 

  • Quezada-Euán JJG, May-Itzá WJ, Rincón M, De La Rúa P, Paxton RJ (2012) Genetic and phenotypic differentiation in endemic Scaptotrigona hellwegeri (Apidae: Meliponini): implications for the conservation of stingless bee populations in contrasting environments. Insect Conserv Divers 5:433–443

    Article  Google Scholar 

  • Ross KG, Fletcher DJC (1986) Diploid male production? A significant colony mortality factor in the fire ant Solenopsis invicta (Hymenoptera: Formicidae). Behav Ecol Sociobiol 19:283–291

    Article  Google Scholar 

  • Ross KG, Vargo EL, Keller L, Trager JC (1993) Effect of a founder event on variation in the genetic sex-determining system of the fire ant Solenopsis invicta. Genetics 135:843–854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roubik DW (2000) Pollination system stability in tropical America. Conserv Biol 14:1235–1236

    Article  Google Scholar 

  • Santos CF, Imperatriz-Fonseca VL, Arias MC (2016) Relatedness and dispersal distance of eusocial bee males on mating swarms. Entomol Sci. doi:10.1111/ens.12195

    Google Scholar 

  • Savolainen P, Zhang Y-P, Luo J, Lundeberg J, Leitner T (2002) Genetic evidence for an East Asian origin of domestic dogs. Science 298:1610–1613

    Article  CAS  PubMed  Google Scholar 

  • Schwarz HF (1938) The stingless bees (Meliponidae) of British Guiana and some related forms. Bull Am Mus Nat Hist 74:437–508

    Google Scholar 

  • Sheppard WS (2012) Honey bee genetic diversity and breeding—towards the reintroduction of European germplasm. Am Bee J 152:155–158

    Google Scholar 

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reaction primers. Ann Entomol Soc Am 87:651–701

    Article  CAS  Google Scholar 

  • Slaa EJ, Sánchez Chaves LA, Malagodi-Braga K, Hofstede FE (2006) Stingless bees in applied pollination: practice and perspectives. Apidologie 37:293–315

    Article  Google Scholar 

  • Smith BD (1995) The emergence of agriculture. WH Freeman & Co, New York

    Google Scholar 

  • Souza BA, Lopes MTR, Pereira FM (2013) Cultural aspects of meliponiculture. In: Vit P, Roubik DW (eds) Stingless bees process honey and pollen in cerumen pots. Saber-ULA, Mérida, pp 1–6

    Google Scholar 

  • Stephens PA, Sutherland WJ, Freckleton RP (1999) What is the Allee effect? Oikos 87:185–190

    Article  Google Scholar 

  • Stouthamer R, Luck RF, Werren JH (1992) Genetics of sex determination and the improvement of biological control using parasitoids. Environ Entomol 21:427–435

    Article  Google Scholar 

  • Thummajitsakul S, Klinbunga S, Sittipraneed S (2011) Genetic differentiation of the stingless bee Tetragonula pagdeni in Thailand using SSCP analysis of a large subunit of mitochondrial ribosomal DNA. Biochem Genet 49:499–510

    Article  CAS  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Van Veen JW, Sommeijer MJ (2000) Colony reproduction in Tetragonisca angustula (Apidae, Meliponini). Insectes Sociaux 47:70–75

    Article  Google Scholar 

  • VanEngelsdorp D, Meixner MD (2010) A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J Invertebr Pathol 103(Suppl):S80–S595

    Article  PubMed  Google Scholar 

  • Velthuis HHW, Koedam D, Imperatriz-Fonseca VL (2005) The males of Melipona and other stingless bees, and their mothers. Apidologie 36:169–185

    Article  Google Scholar 

  • Walsh PS, Metzger DA, Higuchi R (1991) Chelex-100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wright SI, Bi IV, Schroeder SG, Yamasaki M, Doebley JF, McMullen MD, Gaut BS (2005) The effects of artificial selection on the maize genome. Science 308:1310–1314

    Article  CAS  PubMed  Google Scholar 

  • Ximénez F (1967) Historia natural del Reino de Guatemala. (Compuesta por el reverendo padre predicador genera Fray Francisco Ximénez, de la Orden de Predicadores Escrita em el pueblo de Sacapulas en el año de 1722). Editorial José de Pineda Ibarra, Cidade de Guatemala

  • Zayed A (2009) Bee genetics and conservation. Apidologie 40:237–262

    Article  Google Scholar 

  • Zayed A, Packer L (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc Natl Acad Sci 102:10742–10746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeder MA, Emshwiller E, Smith BD, Bradley DG (2006) Documenting domestication: the intersection of genetics and archaeology. Trends Genet 22:139–155

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Yuri M. Mizusawa for his help on sampling and to Susy Coelho for technical assistance. We thank the beekeepers Jean, Clóvis, José Luciano, Arthur Favaretto, Vilson Hackmann, Dalírio Reisner, Olindo Forgiarini and Olindo Zarpellon for allowing us to collect samples in their meliponaries. A special thanks to Flávio Haupenthal for sending us samples and helping establish contact with beekeepers from Paraná. This work was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (04/15801-0; 08/08546-4; 08/07417-6; 10/50597-5; 12/00802-7; 12/13200-5) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (scholarship to LRS). This work was carried out in the Research Center on Biodiversity and Computing (BioComp) of the Universidade de São Paulo (USP), supported by the USP Provost’s Office for Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro R. Santiago.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 551 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santiago, L.R., Francisco, F.O., Jaffé, R. et al. Genetic variability in captive populations of the stingless bee Tetragonisca angustula . Genetica 144, 397–405 (2016). https://doi.org/10.1007/s10709-016-9908-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-016-9908-z

Keywords

Navigation