, Volume 143, Issue 4, pp 393–401 | Cite as

Male and female meiosis in the mountain scorpion Zabius fuscus (Scorpiones, Buthidae): heterochromatin, rDNA and TTAGG telomeric repeats

  • Renzo Sebastián Adilardi
  • Andrés Alejandro Ojanguren-Affilastro
  • Camilo Iván Mattoni
  • Liliana María Mola


All cytogenetically studied scorpions present male achiasmatic meiosis and lack heteromorphic sex chromosomes. In contrast, information about female meiosis in scorpions is scarce due to the difficulty of finding meiotic cells. The genus Zabius includes three described species and no chromosome studies have been performed on it until now. We analyzed the constitutive heterochromatin distribution, NORs and telomeric sequences in mitosis and meiosis of males and females of different populations of Zabius fuscus. All specimens presented 2n = 18 holokinetic chromosomes that gradually decreased in size. Male meiosis presented nine bivalents and a polymorphism for one reciprocal translocation in one population. Telomeric signals were detected at every terminal region, confirming also the presence of a (TTAGG) n motif in Buthidae. Constitutive heterochromatin was found in three chromosome pairs at a terminal region; moreover, NORs were embedded in the heterochromatic region of the largest pair. Chromosome size and landmarks allowed us to propose the chromosomes involved in the rearrangement. In four females, cells at different prophase I stages were analyzed. We describe a diffuse stage and the presence of ring-shaped bivalents. We discuss the possible origin of these bivalents in the framework of chiasmatic or achiasmatic female meiosis. These results contribute to increase the scarce evidence of female meiosis in scorpions and raise new questions about its mechanism.


Holokinetic chromosomes Achiasmatic meiosis Telomere FISH Female diffuse stage 



This work was supported by grants from the National Council of Scientific and Technological Research (CONICET) (PIP 0342), University of Buenos Aires (UBA) (Ex 0859) and National Agency for Scientific and Technological Promotion (ANPCyT) (PICT 2010-1665) to Drs L. Poggio and L. Mola, ANPCyT (PICT 2010-0906) to Drs A. V. Peretti and C. I. Mattoni and ANPCyT (PICT 2010-1764) to Dr A. A. Ojanguren-Affilastro. The authors wish to thank to Gonzalo Rubio, Andrés Porta, Ernesto Costa-Schmidt and Hernán Iuri for their help during the field work.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Ábalos JW (1953) El género Zabius Thorell, 1894 (Buthidae, Scorpiones). An Inst Med Reg Univ Tucumán 3:349–356Google Scholar
  2. Acosta LE, Rosso de Ferradás B (1996) Arácnidos de la Provincia de Córdoba. In: di Tada IE, Bucher EH (eds) Biodiversidad de la Provincia de Córdoba, Fauna 1. Universidad Nacional de Río Cuarto, Río Cuarto, pp 71–99Google Scholar
  3. Acosta LE, Candido DM, Buckup EH, Brescovit AD (2008) Description of Zabius gaucho (Scorpiones, Buthidae), a new species from southern Brazil, with an update about the generic diagnosis. J Arachnol 36(3):491–501CrossRefGoogle Scholar
  4. Adilardi RS, Ojanguren-Affilastro AA, Martí DA, Mola LM (2014) Cytogenetic analysis on geographically distant parthenogenetic populations of Tityus trivittatus Kraepelin, 1898 (Scorpiones, Buthidae): karyotype, constitutive heterochromatin and rDNA localization. Comp Cytogenet 8(2):81–92PubMedCentralPubMedCrossRefGoogle Scholar
  5. Benavente R, Wettstein R (1980) Ultrastructural characterization of the sex chromosomes during spermatogenesis of spiders having holocentric chromosomes and long diffuse stage. Chromosoma 77:69–82PubMedCrossRefGoogle Scholar
  6. Debus B (1978) “Nodules” in the achiasmatic meiosis of Bithynia (Mollusca, Prosobranchia). Chromosoma 69:81–92PubMedCrossRefGoogle Scholar
  7. González G, Confalonieri V, Comas C, Naranjo CA, Poggio L (2004) GISH Genomic in situ hybridization reveals cryptic genetic differences between maize and its putative wild progenitor Zea mays subsp. parviglumis. Genome 47:947–953PubMedCrossRefGoogle Scholar
  8. Guénin HA (1961) Contribution a la connaissance cytologique des scorpions: les chromosomes de Buthus occitanus Amor. (I). Vie et Milieu 12:89–96Google Scholar
  9. Haineman RZ, Hughes RD (1970) Reproduction, reproductive organs and meiosis in the bisexual non-parthenogenetic mite Caloglyphus mycophagus, with reference to oocyte degeneration in virgins. J Morphol 130:93–102CrossRefGoogle Scholar
  10. Howell WM, Black DA (1980) Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 36:1014–1015PubMedCrossRefGoogle Scholar
  11. Ijdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucl Acids Res 19:4780PubMedCentralPubMedCrossRefGoogle Scholar
  12. Kahn J (1964) Cytotaxonomy of ticks. Q J Microsc Sci 105:123–137Google Scholar
  13. Keyl HG (1957) Zur Karyologie der Hydrachnellen (Acarina). Chromosoma 8:719–729PubMedCrossRefGoogle Scholar
  14. Kořínková T, Král J (2011) Structure and meiotic behaviour of B chromosomes in Sphaerium corneum/S. nucleus complex (Bivalvia: Sphaeriidae). Genetica 139:155–165PubMedCrossRefGoogle Scholar
  15. Kovařík F, Lowe G, Plíšková J, Šťáhlavský F (2013) A new scorpion genus, Gint gen. n., from the Horn of Africa (Scorpiones: Buthidae). Euscorpius 173:1–19Google Scholar
  16. Král J, Musilová J, Šťáhlavský F, Rezác M, Akan Z, Edwards RL, Coyle FA, Almerje CR (2006) Evolution of the karyotype and sex chromosome systems in basal clades of araneomorph spiders. Chromosome Res 14:859–880PubMedCrossRefGoogle Scholar
  17. Král J, Kováč L, Šťáhlavský F, Lonský P, L´uptáčik P (2008) The first karyotype study in palpigrades, a primitive order of arachnids (Arachnida: Palpigradi). Genetica 134:79–87PubMedCrossRefGoogle Scholar
  18. Král J, Kořínková T, Krkavcová L, Musilová J, Forman M, Ávila Herrera IM, Haddad CR, Vítková M, Henriques S, Palacios Vargas JG, Hedin M (2013) Evolution of karyotype, sex chromosomes, and meiosis in mygalomorph spiders (Araneae: Mygalomorphae). Biol J Linn Soc 109:377–408CrossRefGoogle Scholar
  19. López-Fernández C, Pradillo E, Zabal-Augirre M, Fernandez JL, Garcia De La Vega C, Gisalvez J (2004) Telomeric and interstitial telomeric-like DNA sequence in Orthoptera genomes. Genome 47:757–763PubMedCrossRefGoogle Scholar
  20. Marec F (1996) Synaptonemal complexes in insects. Int J Insect Morphol Embryol 25:205–233CrossRefGoogle Scholar
  21. Mattos VF, Cella DM, Carvalho LS, Candido DM, Schneider MC (2013) High chromosome variability and the presence of multivalent associations in buthid scorpions. Chromosome Res 21:121–136PubMedCrossRefGoogle Scholar
  22. McKee BD, Yan R, Tsai J (2012) Meiosis in male Drosophila. Spermatogenesis 2:167–184PubMedCentralPubMedCrossRefGoogle Scholar
  23. Moustafa MA, Alaa AM, Sarlan MH, Yaseen AE (2005) Chromosomal studies on four Egyptian scorpion species of genus Androctonus (Family: Buthidae). Cytologia 70:161–165CrossRefGoogle Scholar
  24. Nath V (1925) Cell inclusions in the oogenesis of scorpions. Proc R Soc Lond B 98:44–58CrossRefGoogle Scholar
  25. Oakley HA (1982) Meiosis in Mesostoma ehrenbergii ehrenbergii (Turbellaria, Rhabdocoela). Chromosoma 87:133–147CrossRefGoogle Scholar
  26. Ojanguren-Affilastro AA (2005) Estudio monográfico de los escorpiones de la República Argentina. Rev Iber Aracnol 11:75–241Google Scholar
  27. Peretti AV (1991) Comportamiento de apareamiento de Zabius fuscus (Thorell) (Scorpiones, Buthidae). Bol Soc Biol Concepc 62:123–146Google Scholar
  28. Peretti AV (1993) Estudio de la biología reproductiva en escorpiones argentinos (Arachnida, Scorpiones). (morfología funcional y comportamiento). PhD thesis, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  29. Peretti AV, Carrera P (2005) Female control of mating sequences in the mountain scorpion Zabius fuscus: males do not use coercion as a response to unreceptive females. Anim Behav 69:453–462CrossRefGoogle Scholar
  30. Piza ST (1939) Comportamento dos cromossomos na primeira divisão do espermatócito do Tityus bahiensis. Sci Genet 1:255–261Google Scholar
  31. Rodríguez Gil SG, Mola LM, Papeschi AG, Scioscia CL (2002) Cytogenetic heterogeneity in common haplogyne spiders from Argentina (Arachnida, Araneae). J Arachnol 30:47–56CrossRefGoogle Scholar
  32. Sato I (1940) Studies on the cytoplasmic phenomena in the spermatogenesis of the oriental scorpion, Buthus martensii, with special reference to the structure of the chondriosome ring and the dictyokinesis. J Sci Hiroshima Univ 8:1–116Google Scholar
  33. Schneider MC, Cella DM (2010) Karyotype conservation in 2 populations of the parthenogenetic scorpion Tityus serrulatus (Buthidae): rDNA and its associated heterochromatin are concentrated on only one chromosome. J Hered 101:491–496PubMedCrossRefGoogle Scholar
  34. Schneider MC, Zacaro AA, Pinto-da-Rocha R, Candido DM, Cella DM (2009a) A comparative cytogenetic analysis of 2 Bothriuridae species and overview of the chromosome data of Scorpiones. J Hered 5:545–555CrossRefGoogle Scholar
  35. Schneider MC, Zacaro AA, Pinto-da-Rocha R, Candido DM, Cella DM (2009b) Complex meiotic configuration of the holocentric chromosomes: the intriguing case of the scorpion Tityus bahiensis. Chromosome Res 17:883–898PubMedCrossRefGoogle Scholar
  36. Shanahan CM (1989a) Cytogenetics of Australian scorpions. I. Interchange polymorphism in the family Buthidae. Genome 32:882–889CrossRefGoogle Scholar
  37. Shanahan CM (1989b) Cytogenetics of Australian scorpions. II. Chromosome polymorphism in species of Urodacus (family Scorpionidae). Genome 32:890–900CrossRefGoogle Scholar
  38. Sharma GP, Dutta GP (1959) On the male heterogamety in Melanopa unicolor Roewer (Opiliones–Arachnida). Res Bull Panjab Univ 10:209–213Google Scholar
  39. Sharma GP, Parshad R, Joneja MG (1959) Chromosome mechanism in the males of three species of scorpions (Scorpiones–Buthidae). Res Bull Panjab Univ 10:197–207Google Scholar
  40. Soleglad ME, Fet V (2003) High-level systematics and phylogeny of the extant scorpions (Scorpiones: Orthosterni). Euscorpius 11:1–175Google Scholar
  41. Šťáhlavský F, Král J (2004) Karyotype analysis and achiasmatic meiosis in pseudoscorpions of the family Chthoniidae (Arachnida: Pseudoscorpiones). Hereditas 140:49–60PubMedCrossRefGoogle Scholar
  42. Šťáhlavský F, Král J, Harvey MS, Haddad CR (2006) A karyotype study on the pseudoscorpion families Geogarypidae, Garypinidae and Olpiidae (Arachnida: Pseudoscorpiones). Eur J Entomol 103:277–289CrossRefGoogle Scholar
  43. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306PubMedCrossRefGoogle Scholar
  44. Suzuki S (1954) Cytological studies in spiders III. Studies on the chromosomes of fifty-seven species of spiders belonging to seventeen families with general considerations on chromosomal evolution. J Sci Hiroshima Univ (B) 15:23–136Google Scholar
  45. Teruel R (2002) Confirmación de la presencia del género Zabius Thorell 1894 (Scorpiones: Buthidae) en la provincia de Tucumán, Argentina. Rev Iber Aracnol 6:147–148Google Scholar
  46. Vítková M, Král J, Traut W, Zrzavý J, Marec F (2005) The evolutionary origin of insect telomeric repeats, (TTAGG)n. Chromosome Res 13:145–156PubMedCrossRefGoogle Scholar
  47. White MJD (1973) Animal cytology and evolution, 3rd edn. Cambridge University Press, CambridgeGoogle Scholar
  48. Wilson EB (1931) The distribution of sperm-forming materials in scorpions. J Morphol 52:429–483CrossRefGoogle Scholar
  49. Yamazaki K, Yahata H, Kobayashi N, Makioka T (2001) Egg maturation and parthenogenetic recovery of diploidy in the scorpion Liocheles australasiae (Fabricius) (Scorpions, Ischnuridae). J Morphol 247:39–50PubMedCrossRefGoogle Scholar
  50. Yoshida Y, Toshioka S (1964) Studies on spermatogenesis in scorpions. I. Numbers of chromosomes in male germ-cells of three species of scorpions. Acta Arachnol 19:1–4CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Renzo Sebastián Adilardi
    • 1
  • Andrés Alejandro Ojanguren-Affilastro
    • 2
  • Camilo Iván Mattoni
    • 3
  • Liliana María Mola
    • 1
  1. 1.Laboratorio de Citogenética y Evolución, Departamento de Ecología, Genética y Evolución, IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresCABAArgentina
  2. 2.División de AracnologíaMuseo Argentino de Ciencias Naturales “Bernardino Rivadavia”, CONICETCABAArgentina
  3. 3.Laboratorio de Biología Reproductiva y Evolución (CONICET-UNC), Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations