Abstract
Rhodococcus erythropolis is a worldwide-distributed actinobacterium that exhibits a remarkable metabolic versatility illustrated by its ability to degrade complex compounds, such as quorum-sensing signals N-acylhomoserine lactones (NAHLs), phenols, sterols and fuel derivatives. Because of its catabolic properties, R. erythropolis strains are proposed as anti-biofouling agents against NAHL-dependent biofilms, biocontrol agents against NAHL-emitting plant pathogens, and bioremediation agents in contaminated waters and soils. Here, we used the PacBio technology to resolve the complete genome sequence of the biocontrol strain R. erythropolis R138. Its genome consisted in a circular chromosome (6,236,862 bp), a linear plasmid pLRE138 (477,915 bp) and a circular plasmid pCRE138 (91,729 bp). In addition, draft genomes of five R. erythropolis strains were determined by Illumina technology and compared with the other five R. erythropolis genomes that are available in public databases: 5,825 common CDSs were present in all of the eleven analyzed genomes and represented up to 87 % of those identified in R. erythropolis R138. This study highlighted the high proportion of core-genome genes in R. erythropolis, but a high variability of the plasmid content. Key-metabolic pathways which are involved in the degradation of complex molecules, such as NAHLs and phenol, catechol and sterol derivatives are coded by the R. erythropolis core-genome.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Aggarwal S, Karimi IA, Lee DY (2011) Flux-based analysis of sulfur metabolism in desulfurizing strains of Rhodococcus erythropolis. FEMS Microbiol Lett 315(2):115–121
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genom 9:75
Barbey C, Crepin A, Cirou A, Budin-Verneuil A, Orange N, Feuilloley M, Faure D, Dessaux Y, Burini J-F, Latour X (2012) Catabolic pathway of gamma-caprolactone in the biocontrol agent Rhodococcus erythropolis. J Proteome Res 11(1):206–216
Bertani G (1951) Studies on lysogenesis. 1. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62(3):293–300
Bouet JY, Funnell BE (1999) P1 ParA interacts with the P1 partition complex at parS and an ATP-ADP switch controls ParA activities. EMBO J 18:1415–1424
Cha C, Gao P, Chen YC, Shaw PD, Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11(11):1119–1129
Chilton MD, Currier TC, Farrand SK, Bendich AJ, Gordon MP, Nester EW (1974) Agrobacterium tumefaciens DNA and PS8 bacteriophage DNA not detected in crown gall tumors. Proc Natl Acad Sci USA 71(9):3672–3676
Cirou A, Diallo S, Kurt C, Latour X, Faure D (2007) Growth promotion of quorum-quenching bacteria in the rhizosphere of Solanum tuberosum. Environ Microbiol 9(6):1511–1522
Cirou A, Raffoux A, Diallo S, Latour X, Dessaux Y, Faure D (2011) Gamma-caprolactone stimulates growth of quorum-quenching Rhodococcus populations in a large-scale hydroponic system for culturing Solanum tuberosum. Res Microbiol 162(9):945–950
Cirou A, Mondy S, An S, Charrier A, Sarrazin A, Thoison O, DuBow M, Faure D (2012) Efficient biostimulation of native and introduced quorum-quenching Rhodococcus erythropolis populations is revealed by a combination of analytical chemistry, microbiology, and pyrosequencing. Appl Environ Microbiol 78(2):481–492
de Carvalho C, da Fonseca M (2005) The remarkable Rhodococcus erythropolis. Appl Microbiol Biotechnol 67:715–726
de Carvalho C, Fatal V, Alves SS, da Fonseca MMR (2007) Adaptation of Rhodococcus erythropolis cells to high concentrations of toluene. Appl Microbiol Biotechnol 76(6):1423–1430
de Carvalho C, Wick LY, Heipieper HJ (2009) Cell wall adaptations of planktonic and biofilm Rhodococcus erythropolis cells to growth on C5 to C16 n-alkane hydrocarbons. Appl Microbiol Biotechnol 82(2):311–320
del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R (1998) Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 62:434–464
Deng W, Liou SR, Plunkett G, Mayhew GF, Rose DJ, Burland V et al (2003) Comparative genomics of Salmonella enterica serovar typhi strains Ty2 and CT18. J Bacteriol 185(7):2330–2337
Faure D, Dessaux Y (2007) Novel biocontrol strategies directed at Pectobacterium carotovorum. Eur J Plant Pathol 119:353–365
Ferrarini M, Moretto M, Ward JA, Surbanovski N, Stevanovic V, Giongo L et al (2013) An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome. BMC Genomics 14:11
Gogarten JP, Townsend JP (2005) Horizontal gene transfer, genome innovation and evolution. Nat Rev Microbiol 3:679–687
Hannou N, Mondy S, Planamente S, Moumni M, Llop P, López M, Manceau C, Barny MA, Faure D (2013) Deep sequencing revealed genome-wide single-nucleotide polymorphism and plasmid content of Erwinia amylovora strains isolated in Middle Atlas. Morocco. Res Microbiol 164(8):815–820
Koren S, Harhay GP, Smith TP, Bono JL, Harhay DM, McVey SD et al (2013) Reducing assembly complexity of microbial genomes with single-molecule sequencing. Genome Biol 14(9):16
Kube M, Migdoll AM, Gehring I, Heitmann K, Mayer Y, Kuhl H, Knaust F, Geider K, Reinhardt R (2010) Genome comparison of the epiphytic bacteria Erwinia billingiae and E. tasmaniensis with the pear pathogen E. pyrifoliae. BMC Genom 11:393–408
Kwasiborski A, Mondy S, Beury-Cirou A, Faure D (2014) Genome sequence of the quorum-quenching Rhodococcus erythropolis strain R138. Genome Announc 2(2):e00224-14
Kwasiborski A, Mondy S, Chong T-M, Barbey C, Chan K-G, Beury-Cirou A, Latour X, Faure D (2015) Transcriptome of the quorum-sensing signal-degrading Rhodococcus erythropolis responds differentially to virulent and avirulent Pectobacterium atrosepticum. Heredity. doi:10.1038/hdy.2014.121
Lang J, Vigouroux A, Planamente S, El Sahili A, Blin P, Aumont-Nicaise M, Dessaux Y, Moréra S, Faure D (2014) Agrobacterium uses a unique ligand-binding mode for trapping opines and acquiring a competitive advantage in the niche construction on plant host. PLoS Pathog 10(10):e1004444
McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, Daykin M, Lamb JH, Swift S, Bycroft BW, Stewart GSAB, Williams P (1997) Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143(12):3703–3711
Moreno-Horn M, Martinez-Rojas E, Gorisch H, Tressl R, Garbe LA (2007) Oxidation of 1,4-alkanediols into gamma-lactones via gamma-lactols using Rhodococcus erythropolis as biocatalyst. J Mol Catal B-Enzym 49(1–4):24–27
Oh HS, Kim SR, Cheong WS, Lee CH, Lee JK (2013) Biofouling inhibition in MBR by Rhodococcus sp. BH4 isolated from real MBR plant. Appl Microbiol Biotechnol 97(23):10223–10231
Ohshiro T, Kojima T, Torii K, Kawasoe H, Izumi Y (1999) Purification and characterization of dibenzothiophene (DBT) sulfone monooxygenase, an enzyme involved in DBT desulfurization, from Rhodococcus erythropolis D-1. J Biosc Bioeng 88:610–616
Patrauchan MA, Florizone C, Dosanjh M, Molm WW, Davies J, Eltis LD (2005) Catabolism of benzoate and phthalate in Rhodococcus sp strain RHA1: redundancies and convergence. J Bacteriol 187(12):4050–4063
Peng L, Yang C, Zeng G, Wang L, Dai C, Long Z, Liu H, Zhong Y (2014) Characterization and application of bioflocculant prepared by Rhodococcus erythropolis using sludge and livestock wastewater as cheap culture media. Appl Microbiol Biotechnol 98(15):6847–6858
Petrusma M, van der Geize R, Dijkhuizen L (2014) 3-Ketosteroid 9 alpha-hydroxylase enzymes: rieske non-heme monooxygenases essential for bacterial steroid degradation. Anton Leeuw Int J G 106(1):157–172
Rodionov O, Lobocka M, Yarmolinsky M (1999) Silencing of genes flanking the P1 plasmid centromere. Science 283:546–549
Rossi M, Brigidi P, y Rodriguez AGV, Matteuzzi D (1996) Characterization of the plasmid pMB1 from Bifidobacterium longum and its use for shuttle vector construction. Res Microbiol 147:133–143
Sekine M, Tanikawa S, Omata S, Saito M, Fujisawa T, Tsukatani N et al (2006) Sequence analysis of three plasmids harboured in Rhodococcus erythropolis strain PR4. Environ Microbiol 8(2):334–346
Shevtsov A, Tarlykov P, Zholdybayeva E, Momynkulov D, Sarsenova A, Moldagulova N, Momynaliev K (2013) Draft Genome sequence of Rhodococcus erythropolis DN1, a crude oil biodegrader. Genome Announc 1(5):e00846-13
Stolt P, Stoker NG (1997) Mutational analysis of the regulatory region of the Mycobacterium plasmid pAL5000. Nucleic Acids Res 25:3840–3846
Tao F, Zhao P, Li Q, Su F, Yu B, Ma C, Tang H, Tai C, Wu G, Xu P (2011) Genome sequence of Rhodococcus erythropolis XP, a biodesulfurizing bacterium with industrial potential. J Bacteriol 193(22):6422–6423
Tian XJ, Liu XY, Liu H, Wang SJ, Zhou NY (2013) Biodegradation of 3-nitrotoluene by Rhodococcus sp strain ZWL3NT. Appl Microbiol Biotechnol 97(20):9217–9223
Uroz S, D’Angelo-Picard C, Carlier A, Elasri M, Sicot C, Petit A, Oger P, Faure D, Dessaux Y (2003) Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. Microbiology 149(8):1981–1989
Uroz S, Chhabra SR, Cámara M, Williams P, Oger P, Dessaux Y (2005) N-Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151(10):3313–3322
Uroz S, Oger PM, Chapelle E, Adeline MT, Faure D, Dessaux Y (2008) A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl Environ Microbiol 74(5):1357–1366
Uroz S, Dessaux Y, Oger P (2009) Quorum sensing and quorum-quenching: the yin and yang of bacterial communication. ChemBioChem 10(2):205–216
van der Geize R, Dijkhuizen L (2004) Harnessing the catabolic diversity of rhodococci for environmental and biotechnological applications. Curr Opin Microbiol 7:255–261
Vesely M, Knoppova M, Nesvera J, Patek M (2007) Analysis of catRABC operon for catechol degradation from phenol-degrading Rhodococcus erythropolis. Appl Microbiol Biotechnol 76(1):159–168
Zidkova L, Szokof J, Rucka L, Patek M, Nesver J (2013) Biodegradation of phenol using recombinant plasmid-carrying Rhodococcus erythropolis strains. Int Biodeterioration Biodegradation 84:179–184
Acknowledgments
This work has benefited from the facilities and expertise of the high throughput sequencing platforms of IMAGIF (Gif-sur-Yvette). A.K. was supported by the region Ile-de-France (ASTREA), as well as by the CNRS and ANR (project SVSE7 2011 ECORUM). K.G.C. thanks the High Impact Research Grant (UM.C/625/1/HIR/MOHE/CHAN/14/1, No. H-50001-A000027) and the French Fellowship awarded to K.G. Chan by the French Embassy in Malaysia is also gratefully acknowledged.
Conflict of interest
The authors declare that they have no conflict of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kwasiborski, A., Mondy, S., Chong, TM. et al. Core genome and plasmidome of the quorum-quenching bacterium Rhodococcus erythropolis . Genetica 143, 253–261 (2015). https://doi.org/10.1007/s10709-015-9827-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10709-015-9827-4


