Skip to main content
Log in

Positive selection at a seminal fluid gene within a QTL for conspecific sperm precedence

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

The role of sexual selection in driving the rapid evolution of male reproductive proteins has been tested in a wide variety of organisms. Sperm competition is a form of postmating sexual selection that can contribute to reproductive isolation between species by biasing the proportion of progeny fathered by conspecific over heterospecific males. This phenomenon is known as conspecific sperm precedence (CSP). A previous quantitative trait loci study between Drosophila simulans and D. sechellia identified a locus associated with CSP within the second chromosome centered at the 53 cytogenetic map position. Male accessory gland proteins (ACPs) are associated with triggering postmating physiological responses in D. melanogaster females that can contribute to differential male reproductive success. Moreover, a large number of ACPs evolve rapidly and under positive selection among closely-related species of Drosophila. Here we have sequenced five candidate Acp genes (Acp53C14a, Acp53C14b, Acp53C14c, Acp53Ea and Acp54A1) within the previously mapped D. simulansD. sechellia CSP locus from different D. simulans and D. sechellia strains. Polymorphism data analysis shows evidence of a selective sweep at Acp53Ea within D. simulans. In the context of CSP, the combined use of polymorphism and interspecies sequence divergence shows that Acp53C14c gene tree topology separates D. simulans and D. sechellia. Moreover, Acp53C14c is the only gene showing evidence of positive selection with five fixed amino acid substitutions between species. Our results highlight Acp53C14c as a candidate gene for future gene targeting studies to elucidate its role in CSP between D. simulans and D. sechellia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105

    Article  CAS  PubMed  Google Scholar 

  • Avila FW, Wolfner MF (2009) Acp36DE is required for uterine conformational changes in mated Drosophila females. Proc Natl Acad Sci USA 106:15796–15800

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Avila FW, Sirot LK, LaFlamme BA, Rubinstein CD, Wolfner MF (2011) Insect seminal fluid proteins: identification and function. Annu Rev Entomol 56:21–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bassett AR, Tibbit C, Ponting CP, Liu JL (2013) Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 4:220–228

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bromberg Y, Rost B (2007) SNAP: predict effect of non-synonymous polymorphisms on function. Nucl Acids Res 35:3823–3835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chapman T (2008) The soup in my fly: evolution, form and function of seminal fluid proteins. PLoS Biol 6:e179

    Article  PubMed Central  PubMed  Google Scholar 

  • Civetta A (2003) Shall we dance or shall we fight? Using DNA sequence data to untangle controversies surrounding sexual selection. Genome 46:925–929

    Article  CAS  PubMed  Google Scholar 

  • Civetta A, Singh RS (1995) High divergence of reproductive tract proteins and their association with postzygotic reproductive isolation in Drosophila melanogaster and Drosophila virilis group species. J Mol Evol 41:1085–1095

    Article  CAS  PubMed  Google Scholar 

  • Civetta A, Waldrip-Dail HM, Clark AG (2002) An introgression approach to mapping differences in mating success and sperm competitive ability in Drosophila simulans and D. sechellia. Genet Res 79:65–74

    Article  CAS  PubMed  Google Scholar 

  • Clark AG, Aguadé M, Prout T, Harshman LG, Langley CH (1995) Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster. Genetics 139:189–201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark NL, Aagaard JE, Swanson WJ (2006) Evolution of reproductive proteins from animals and plants. Reproduction 131:11–22

    Article  CAS  PubMed  Google Scholar 

  • Fay JC, Wu CI (2000) Hitchhiking under positive Darwinian selection. Genetics 155:1405–1413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fiumera AC, Dumont BL, Clark AG (2005) Sperm competitive ability in Drosophila melanogaster associated with variation in male reproductive proteins. Genetics 169:243–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fiumera AC, Dumont BL, Clark AG (2007) Associations between sperm competition and natural variation in male reproductive genes on the third chromosome of Drosophila melanogaster. Genetics 176:1245–1260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gratz SJ, Wildonger J, Harrison MM, O’Connor-Giles KM (2013) CRISPR/Cas9-mediated genome engineering and the promise of designer flies on demand. Fly (Austin) 7:249–255

    Article  CAS  Google Scholar 

  • Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, O’Connor-Giles KM (2014) Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196:961–971

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Haerty W, Jagadeeshan S, Kulathinal RJ, Wong A, Ravi Ram K, Sirot LK, Levesque L, Artieri CG, Wolfner MF, Civetta A, Singh RS (2007) Evolution in the fast lane: rapidly evolving sex-related genes in Drosophila. Genetics 177:1321–1335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Howard DJ, Gregory P, Chu J, Cain M (1998) Conspecific sperm precedence is an effective barrier to hybridization between closely related species. Evolution 52:511–516

    Article  Google Scholar 

  • Larson EL, Hume GL, Andrés JA, Harrison RG (2012) Post-mating prezygotic barriers to gene exchange between hybridizing field crickets. J Evol Biol 25:174–186

    Article  CAS  PubMed  Google Scholar 

  • Levesque L, Brouwers B, Sundararajan V, Civetta A (2010) Third chromosome candidate genes for conspecific sperm precedence between D. simulans and D. mauritiana. BMC Genet 11:21

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manier MK, Lüpold S, Belote JM, Starmer WT, Berben KS, Ala-Honkola O, Collins WF, Pitnick S (2013) Postcopulatory sexual selection generates speciation phenotypes in Drosophila. Curr Biol 23:1853–1862

    Article  CAS  PubMed  Google Scholar 

  • Matsubayashi KW, Katakura H (2009) Contribution of multiple isolating barriers to reproductive isolation between a pair of phytophagous ladybird beetles. Evolution 63:2563–2580

    Article  PubMed  Google Scholar 

  • McDonald JH, Kreitman M (1991) Adaptive protein evolution at the Adh locus in Drosophila. Nature 351:652–654

    Article  CAS  PubMed  Google Scholar 

  • Mueller JL, Linklater JR, Ravi Ram K, Chapman T, Wolfner MF (2008) Targeted gene deletion and phenotypic analysis of the Drosophila melanogaster seminal fluid protease inhibitor Acp62F. Genetics 178:1605–1614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  • Price CS (1997) Conspecific sperm precedence in Drosophila. Nature 388:663–666

    Article  CAS  PubMed  Google Scholar 

  • Price CS, Kim CH, Posluszny J, Coyne JA (2000) Mechanisms of conspecific sperm precedence in Drosophila. Evolution 54:2028–2037

    Article  CAS  PubMed  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Rugman-Jones PF, Eady PE (2007) Conspecific sperm precedence in Callosobruchus subinnotatus (Coleoptera: Bruchidae): mechanisms and consequences. Proc Biol Sci 274:983–988

    Article  PubMed Central  PubMed  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

  • Thomas S, Singh RS (1992) A comprehensive study of genic variation in natural populations of Drosophila melanogaster. VII. Varying rates of genic divergence as revealed by two-dimensional electrophoresis. Mol Biol Evol 9:507–525

    CAS  PubMed  Google Scholar 

  • Tyler F, Harrison XA, Bretman A, Veen T, Rodríguez-Muñoz R, Tregenza T (2013) Multiple post-mating barriers to hybridization in field crickets. Mol Ecol 22:1640–1649

    Article  PubMed  Google Scholar 

  • Vicario S, Moriyama EN, Powell JR (2007) Codon usage in twelve species of Drosophila. BMC Evol Biol 7:226

    Article  PubMed Central  PubMed  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  CAS  PubMed  Google Scholar 

  • Wong A, Rundle H (2013) Selection on the Drosophila seminal fluid protein Acp62F. Ecol Evol 3:1942–1950

    Article  PubMed Central  PubMed  Google Scholar 

  • Wong A, Wolfner MF (2012) Evolution of Drosophila seminal proteins and their networks. In: Singh RS, Xu J, Kulathinal RJ (eds) Rapidly evolving genes and genetic systems, 1st edn. Oxford University Press, Oxford, pp 144–152

    Chapter  Google Scholar 

  • Wong A, Albright SN, Giebel JD, Ram KR, Ji S, Fiumera AC, Wolfner MF (2008) A role for Acp29AB, a predicted seminal fluid lectin, in female sperm storage in Drosophila melanogaster. Genetics 180:921–931

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by an NSERC Individual Discovery Grant to A. Civetta. A. Reimer was partially supported by an NSERC Undergraduate Student Research Award (USRA).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Civetta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 39 kb)

Supplementary material 2 (DOC 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Civetta, A., Reimer, A. Positive selection at a seminal fluid gene within a QTL for conspecific sperm precedence. Genetica 142, 537–543 (2014). https://doi.org/10.1007/s10709-014-9800-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-014-9800-7

Keywords

Navigation