Genetica

, Volume 141, Issue 4–6, pp 143–155 | Cite as

Detection of site-specific positive Darwinian selection on pandemic influenza A/H1N1 virus genome: integrative approaches

Article

Abstract

In the twenty-first century, the first pandemic novel human influenza A/H1N1virus (NIV) outbreak was reported at Mexico and USA on March and early April, 2009 respectively. The outbreak occurred among human populations due to the presence of meager or no immune response against newly emerged viruses. The success of vaccines and drugs depends on their low susceptibility to the formation of escape mutants in virus. Identification of excess, non-synonymous substitutions over synonymous ones is a main indicator of positive Darwinian selection in protein-coding genes of NIVs. The positive Darwinian selection operating on each site of proteins were inferred by computing ω, the ratio of the non-synonymous/synonymous substitutions [dN/dS (or) Ka/Ks], which was calculated by three different methods in terms of codon-based maximum likelihood, branch-site and empirical Bayesian methods under various models. Totally, nine sites from PB2, PB1, HA, M2 and NS1 are inferred as positively selected. The function for amino acid sites of NIVs proteins under positive selection are inferred by comparing the sites with experimentally determined functionally known amino acid sites. Completely 4 positively selected sites of PB1, HA and M2 are found to be involved in B-cell epitopes (BCEs). Interestingly, most of these sites are also involving in T-cell epitopes (TCEs). However, more sites under positive selection forces are involved in TCEs than those of BCEs. Amino acid sites engaged in both BCEs and TCEs should be measured as highly suitable targets, because these sites could induce the strong humoral and cellular immune responses against targets.

Keywords

Novel influenza A/H1N1 virus Genome Natural selection Amino acid function 

Supplementary material

10709_2013_9713_MOESM1_ESM.doc (9.4 mb)
Supplementary material 1 (DOC 9584 kb)

References

  1. Air GM, Els MC, Brown LE, Laver WG, Webster RG (1985) Location of antigenic sites on the three-dimensional structure of the influenza N2 virus neuraminidase. Virology 145:237–248PubMedCrossRefGoogle Scholar
  2. Arunachalam R, Paulkumar K, Annadurai G (2012a) Phylogenetic analysis of pandemic influenza A/H1N1 virus. Biologia 67(1):14–31CrossRefGoogle Scholar
  3. Arunachalam R, Paulkumar K, Annadurai G (2012b) Genetic ancestor of external antigens of pandemic influenza A/H1N1 virus. Interdiscip Sci Comput Life Sci 4:282–290CrossRefGoogle Scholar
  4. Arunachalam R, Senthilkumar B, Senbagam D, Selvamaleeswaran P, Rajasekarapandian M (2012c) Molecular phylogenetic approach for classification of Salmonella typhi. Res J Microbiol 7(1):13–22CrossRefGoogle Scholar
  5. Babon JAB, Cruz J, Orphin L, Pazoles P, Co MDT, Ennis FA, Terajima M (2009) Genome-wide screening of human T-cell epitopes in influenza A virus reveals a broad spectrum of CD4(+) T-cell responses to internal proteins, hemagglutinins, and neuraminidases. Hum Immunol 70:711–721PubMedCrossRefGoogle Scholar
  6. Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, Tatusova T, Ostell J, Lipman D (2008) The influenza virus resource at the National Center for Biotechnology Information. J Virol 82(2):596–601PubMedCrossRefGoogle Scholar
  7. Berkhoff EGM, de-Wit E, Geelhoed-Mieras MM, Boon ACM, Symons J, Fouchier RA, Osterhaus AD, Rimmelzwaan GF (2005) Functional constraints of influenza A virus epitopes limit escape from cytotoxic T lymphocytes. J Virol 79:11239–11246PubMedCrossRefGoogle Scholar
  8. Blanquer A, Uriz MJ (2007) Cryptic speciation in marine sponges evidenced by mitochondrial and nuclear genes: a phylogenetic approach. Mol Phylogenet Evol 45:392–397PubMedCrossRefGoogle Scholar
  9. Boon ACM, de-Mutsert G, Graus YMF, Fouchier RAM, Sintnicolaas K, Osterhaus AD, Rimmelzwaan GF (2002a) Sequence variation in a newly identified HLA-B35-restricted epitope in the influenza A virus nucleoprotein associated with escape from cytotoxic T lymphocytes. J Virol 76:2567–2572PubMedCrossRefGoogle Scholar
  10. Boon ACM, de-Mutsert G, Graus YMF, Fouchier RAM, Sintnicolaas K, Osterhaus AD, Rimmelzwaan GF (2002b) The magnitude and specificity of influenza A virus-specific cytotoxic T-lymphocyte responses in humans is related to HLA-A and -B phenotype. J Virol 76:582–590PubMedCrossRefGoogle Scholar
  11. Boon ACM, de-Mutsert G, Fouchier RAM, Osterhaus ADM, Rimmelzwaan GF (2006) The hypervariable immunodominant NP418–426 epitope from the influenza A virus nucleoprotein is recognized by cytotoxic T lymphocytes with high functional avidity. J Virol 80:6024–6032PubMedCrossRefGoogle Scholar
  12. Bush RM, Fitch WM, Bender CA, Cox NJ (1999) Positive selection on the H3 hemagglutinin gene of human influenza virus A. Mol Biol Evol 16:1457–1465PubMedCrossRefGoogle Scholar
  13. Campitelli L, Ciccozzi M, Salemi M, Taglia F, Boros S, Donatelli I, Rezza G (2006) H5N1 influenza virus evolution: a comparison of different epidemics in birds and humans (1997–2004). J Gen Virol 87:955–960PubMedCrossRefGoogle Scholar
  14. Centers for Disease Control and Prevention (CDC) (2009) Swine influenza A(H1N1) infection in two children-Southern California, March–April 2009. Morb Mortal Wkly Rep 58:400–402Google Scholar
  15. Chen J, Sun Y (2011) Variation in the analysis of positively selected sites using nonsynonymous/synonymous rate ratios: an example using influenza virus. PLoS One 6(5):e19996PubMedCrossRefGoogle Scholar
  16. Cox RJ, Brokstad KA, Ogra P (2004) Influenza virus: immunity and vaccination strategies. Comparison of the immune response to inactivated and live, attenuated influenza vaccines. Scand J Immunol 59:1–15PubMedCrossRefGoogle Scholar
  17. Crowe SR, Miller SC, Brown DM, Adams PS, Dutton RW, Harmsen AG, Lund FE, Randall TD, Swain SL, Woodland DL (2006) Uneven distribution of MHC class II epitopes within the influenza virus. Vaccine 24:457–467PubMedCrossRefGoogle Scholar
  18. Cusick MF, Wang S, Eckels DD (2009) In vitro responses to avian influenza H5 by human CD4 T cells. J Immunol 183:6432–6441PubMedCrossRefGoogle Scholar
  19. Delport W, Poon A-FY, Frost SDW, Pond SLK (2010) Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. Bioinformatics 26:2455–2457PubMedCrossRefGoogle Scholar
  20. Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood estimation from incomplete data via the EM algorithm. J R Stat Soc Ser B 39:1–38Google Scholar
  21. Dixit J, Srivastava H, Sharma M, Das MK, Singh OP, Raghavendra K, Nanda N, Dash AP, Saksena DN, Das A (2010) Phylogenetic inference of Indian malaria vectors from multilocus DNA sequences. Infect Genet Evol 10:755–763PubMedCrossRefGoogle Scholar
  22. Doron-Faigenboim A, Pupko T (2006) A combined empirical and mechanistic codon model. Mol Biol Evol 24:388–397PubMedCrossRefGoogle Scholar
  23. Duret L (2008) Neutral theory: the null hypothesis of molecular evolution. Nat Educ 1(1). http://www.nature.com/scitable/topicpage/neutral-theory-the-null-hypothesis-of-molecular-839
  24. Echevarria-Zuno S, Mejia-Arangure JM, Grajales-Muniz C, Gonzalez-Bonilla C, Borja-Aburto VH (2010) Seasonal vaccine effectiveness against pandemic A/H1N1 reply. Lancet 375:802–803CrossRefGoogle Scholar
  25. Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113PubMedCrossRefGoogle Scholar
  26. Furuse Y, Shimabukuro K, Odagiri T, Sawayama R, Okada T, Khandaker I, Suzuki A, Oshitani H (2010) Comparison of selection pressures on the HA gene of pandemic (2009) and seasonal human and swine influenza A H1 subtype viruses. Virology 405:314–321PubMedCrossRefGoogle Scholar
  27. Garcia-Garcia L, Valdespino-Gomez JL, Lazcano-Ponce E, Jimenez-Corona A, Higuera-Iglesias A, Cruz-Hervert P, Cano-Arellano B, Garcia-Anaya A, Ferreira-Guerrero E, Baez-Saldaña R, Ferreyra-Reyes L, Ponce-de-León-Rosales S, Alpuche-Aranda C, Rodriguez-López MH, Perez-Padilla R, Hernandez-Avila M (2009) Partial protection of seasonal trivalent inactivated vaccine against novel pandemic influenza A/H1N1 2009: case–control study in Mexico City. BMJ 339:b3928PubMedCrossRefGoogle Scholar
  28. Ghedin E, Sengamalay NA, Shumway M, Zaborsk J, Feldblyum T, Subbu V, Spiro DJ, Sitz J, Koo H, Bolotov P, Dernovoy D, Tatusova T, Bao Y, George KS, Taylor J, Lipman DJ, Fraser CM, Taubenberger JK, Salzberg SL (2005) Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature 437:1162–1166PubMedCrossRefGoogle Scholar
  29. Gog JR, Rimmelzwaan GF, Osterhaus AD, Grenfell BT (2003) Population dynamics of rapid fixation in cytotoxic T lymphocyte escape mutants of influenza A. Proc Natl Acad Sci USA 100:11143–11147PubMedCrossRefGoogle Scholar
  30. Gubareva LV, Kaiser L, Hayden FG (2000) Influenza virus neuraminidase inhibitors. Lancet 355:827–835PubMedCrossRefGoogle Scholar
  31. Hardy CT, Young SA, Webster RG, Naeve CW, Owens RJ (1995) Egg fluids and cells of the chorioallantoic membrane of embryonated chicken eggs can select different variants of influenza A (H3N2) viruses. Virology 211:302–306PubMedCrossRefGoogle Scholar
  32. Hay AJ, Wolstenholme AJ, Skehel JJ, Smith MH (1985) The molecular basis of the specific anti-influenza action of amantadine. EMBO J 4:3021–3024PubMedGoogle Scholar
  33. Hoffmann E, Neumann G, Kawaoka Y, Hobom G, Webster RG (2000) A DNA transfection system for generation of influenza A virus from eight plasmids. Proc Natl Acad Sci USA 97:6108–6113PubMedCrossRefGoogle Scholar
  34. Hughes AL, Nei M (1988) Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335:167–170PubMedCrossRefGoogle Scholar
  35. Janies DA, Voronkin IO, Studer J, Hardman J, Alexandrov BB, Treseder TW, Valson C (2010) Selection for resistance to oseltamivir in seasonal and pandemic H1N1 influenza and widespread co-circulation of the lineages. Int J Health Geogr 9:13PubMedCrossRefGoogle Scholar
  36. Jin H, Zhou H, Liu H, Chan W, Adhikary L, Mahmood K, Lee MS, Kemble G (2005) Two residues in the hemagglutinin of A/Fujian/411/02-like influenza viruses are responsible for antigenic drift from A/Panama/2007/99. Virology 336:113–119PubMedCrossRefGoogle Scholar
  37. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282PubMedGoogle Scholar
  38. Khurana S, Suguitan-Jr AL, Rivera Y, Simmons CP, Lanzavecchia A, Sallusto F, Manischewitz J, King LR, Subbarao K, Golding H (2009) Antigenic fingerprinting of H5N1 avian influenza using convalescent sera and monoclonal antibodies reveals potential vaccine and diagnostic targets. PLoS Med 6:e1000049PubMedCrossRefGoogle Scholar
  39. Kilbourne ED, Smith C, Brett I, Pokorny BA, Johansson B, Cox N (2002) The total influenza vaccine failure of 1947 revisited: major intrasubtypic antigenic change can explain failure of vaccine in a post-World War II epidemic. Proc Natl Acad Sci USA 99:10748–10752PubMedCrossRefGoogle Scholar
  40. Kimura M (1968) Evolutionary rate at the molecular level. Nature 217:624–626PubMedCrossRefGoogle Scholar
  41. Kiso M, Mitamura K, Sakai-Tagawa Y, Shiraishi K, Kawakami C, Kimura K, Hayden FG, Sugaya N, Kawaoka Y (2004) Resistant influenza A viruses in children treated with oseltamivir: descriptive study. Lancet 364:759–765PubMedCrossRefGoogle Scholar
  42. Klein J, Horejsi V (1997) Immunology, 2nd edn. Blackwell Science, OxfordGoogle Scholar
  43. Kobasa D, Takada A, Shinya K, Hatta M, Halfmann P, Theriault S, Suzuki H, Nishimura H, Mitamura K, Sugaya N, Usui T, Murata T, Maeda Y, Watanabe S, Suresh M, Suzuki T, Suzuki Y, Feldmann H, Kawaoka Y (2004) Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature 431(7009):703–707PubMedCrossRefGoogle Scholar
  44. Kreijtz JHCM, de-Mutsert G, van-Baalen CA, Fouchier RAM, Osterhaus ADME, Rimmelzwaan GF (2008) Cross-recognition of avian H5N1 influenza virus by human cytotoxic T-lymphocyte populations directed to human influenza A virus. J Virol 82:5161–5166PubMedCrossRefGoogle Scholar
  45. Lazrak A, Iles KE, Liu G, Noah DL, Noah JW, Matalon S (2009) Influenza virus M2 protein inhibits epithelial sodium channels by increasing reactive oxygen species. FASEB J 23(11):3829–3842PubMedCrossRefGoogle Scholar
  46. Lee LY-H, Ha DLAH, Simmons C, de-Jong MD, Chau NV, Schumacher R, Peng YC, McMichael AJ, Farrar JJ, Smith GL, Townsend AR, Askonas BA, Rowland-Jones S, Dong T (2008) Memory T cells established by seasonal human influenza A infection cross-react with avian influenza A (H5N1) in healthy individuals. J Clin Invest 118:3478–3490PubMedGoogle Scholar
  47. Li W, Shi W, Qiao H, Ho SYW, Luo A, Zhang Y, Zhu C (2011) Positive selection on hemagglutinin and neuraminidase genes of H1N1 influenza viruses. Virology J 8:183CrossRefGoogle Scholar
  48. Liu W, Chen YH (2005) High epitope density in a single protein molecule significantly enhances antigenicity as well as immunogenicity: a novel strategy for modern vaccine development and a preliminary investigation about B cell discrimination of monomeric proteins. Eur J Immunol 35:505–514PubMedCrossRefGoogle Scholar
  49. Liu W, Peng Z, Liu Z, Lu Y, Ding J, Chen YH (2004) High epitope density in a single recombinant protein molecule of the extracellular domain of influenza A virus M2 protein significantly enhances protective immunity. Vaccine 23:366–371PubMedCrossRefGoogle Scholar
  50. Macken C, Lu H, Goodman J, Boykin L (2001) The value of a database in surveillance and vaccine selection. In: Osterhaus ADME, Cox N, Hampson AW (eds) Options for the control of influenza IV. Elsevier Science, Amsterdam, pp 103–106Google Scholar
  51. Malickbasha M, Arunachalam R, Senthilkumar B, Rajasekarapandian M, Annadurai G (2010) Effect of ompR gene mutation in expression of ompC and ompF of Salmonella typhi. Interdis Sci Comput Life Sci 2:157–162CrossRefGoogle Scholar
  52. Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, Klimov A, Castrucci MR, Donatelli I, Kawaoka Y (2000) Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol 74(18):8502–8512PubMedCrossRefGoogle Scholar
  53. Mayrose I, Graur D, Ben-Tal N, Pupko T (2004) Comparison of site–specific rate–inference methods for protein sequences: empirical Bayesian methods are superior. Mol Biol Evol 21:1781–1791PubMedCrossRefGoogle Scholar
  54. Mayrose I, Mitchell A, Pupko T (2005) Site-specific evolutionary rate inference: taking phylogenetic uncertainty into account. J Mol Evol 60:345–353PubMedCrossRefGoogle Scholar
  55. Mostow SR, Schoenbaum SC, Dowdle WR, Coleman MT, Kaye HS, Hierholzer JC (1970) Studies on inactivated influenza vaccines. II. Effect of increasing dosage on antibody response and adverse reactions in man. Am J Epidemiol 92:248–256PubMedGoogle Scholar
  56. Mozdzanowska K, Feng JQ, Eid M, Kragol G, Cudic M, Otvos L Jr, Gerhard W (2003) Induction of influenza type A virus-specific resistance by immunization of mice with a synthetic multiple antigenic peptide vaccine that contains ectodomains of matrix protein 2. Vaccine 21:2616–2626PubMedCrossRefGoogle Scholar
  57. Mullick J, Cherian SS, Potdar VA, Chadha MS, Mishra AC (2011) Evolutionary dynamics of the influenza A pandemic (H1N1) 2009 virus with emphasis on Indian isolates: evidence for adaptive evolution in the HA gene. Infect Genet Evol 11:997–1005PubMedCrossRefGoogle Scholar
  58. Nayak JL, Richards KA, Chaves FA, Sant AJ (2010) Analyses of the specificity of CD4 T cells during the primary immune response to influenza virus reveals dramatic MHC-linked asymmetries in reactivity to individual viral proteins. Viral Immunol 23:169–180PubMedCrossRefGoogle Scholar
  59. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  60. Noda T, Sagara H, Yen A, Takada A, Kida H, Cheng H, Kawaoka Y (2006) Architecture of ribonucleoprotein complexes in influenza A virus particles. Nature 439:490–492PubMedCrossRefGoogle Scholar
  61. Obenauer JC, Denson J, Mehta PK, Su X, Mukatira S, Finkelstein DB, Xu X, Wang J, Ma J, Fan Y, Rakestraw KM, Webster RG, Hoffmann E, Krauss S, Zheng J, Zhang Z, Naeve CW (2006) Large-scale sequence analysis of avian influenza isolates. Science 311:1576–1580PubMedCrossRefGoogle Scholar
  62. Pond SLK, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acid sited under selection. Mol Biol Evol 22(5):1208–1222CrossRefGoogle Scholar
  63. Pond SLK, Frost SDW, Muse SV (2005) HyPhy: hypothesis testing using phylogenies. Bioinformatics 21(5):676–679PubMedCrossRefGoogle Scholar
  64. Pond SLK, Frost SDW, Grossman Z, Gravenor MB, Richman DD, Brown AJ (2006) Adaptation to different human populations by HIV-1 revealed by codon-based analyses. PLoS Comput Biol 2(6):e62PubMedCrossRefGoogle Scholar
  65. Pond SLK, Murrell B, Fourment M, Frost SDW, Delport W, Scheffler K (2011) A random effects branch-site model for detecting episodic diversifying selection. Mol Biol Evol. doi:10.1093/molbev/msr125 Google Scholar
  66. Potter CW (2001) A history of influenza. J Appl Microbiol 91:572–579PubMedCrossRefGoogle Scholar
  67. Qu Y, Zhang R, Cui P, Song G, Duan Z, Lei F (2011) Evolutionary genomics of the pandemic 2009 H1N1 influenza viruses (pH1N1v). Virol J 8:250PubMedCrossRefGoogle Scholar
  68. Richards KA, Chaves FA, Krafcik FR, Topham DJ, Lazarski CA, Sant AJ (2007) Direct ex vivo analyses of HLA–DR1 transgenic mice reveal an exceptionally broad pattern of immunodominance in the primary HLA–DR1-restricted CD4 T-cell response to influenza virus hemagglutinin. J Virol 81:7608–7619PubMedCrossRefGoogle Scholar
  69. Richards KA, Chaves FA, Sant AJ (2009) Infection of HLA–DR1 transgenic mice with a human isolate of influenza a virus (H1N1) primes a diverse CD4 T-cell repertoire that includes CD4 T cells with heterosubtypic cross-reactivity to avian (H5N1) influenza virus. J Virol 83:6566–6577PubMedCrossRefGoogle Scholar
  70. Roti M, Yang J, Berger D, Huston L, James EA, Kwok WW (2008) Healthy human subjects have CD4+ T cells directed against H5N1 influenza virus. J Immunol 180:1758–1768PubMedGoogle Scholar
  71. Schanen BC, De-Groot AS, Moise L, Ardito M, McClaine E, Martin W, Wittman V, Warren WL, Drake DR (2011) Coupling sensitive in vitro and in silico techniques to assess cross-reactive CD4(+) T cells against the swine-origin H1N1 influenza virus. Vaccine 29:3299–3309PubMedCrossRefGoogle Scholar
  72. Shen J, Ma J, Wang Q (2009) Evolutionary trends of A(H1N1) influenza virus hemagglutinin since 1918. PLoS One 4(11):e7789PubMedCrossRefGoogle Scholar
  73. Smith W, Andrewes CH, Laidlaw PP (1933) A virus obtained from influenza patients. Lancet 225:66–68CrossRefGoogle Scholar
  74. Smith DJ, Lapedes AS, de-Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus ADME, Fouchier RAM (2004) Mapping the antigenic and genetic evolution of influenza virus. Science 305:371–376PubMedCrossRefGoogle Scholar
  75. Smith KA, Colvin CJ, Weber PSD, Spatz SJ, Coussens PM (2008) High titer growth of human and avian influenza viruses in an immortalized chick embryo cell line without the need for exogenous proteases. Vaccine 26:3778–3782PubMedCrossRefGoogle Scholar
  76. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma SK, Cheung CL, Raghwani J, Bhatt S, Peiris JS, Guan Y, Rambaut A (2009) Origin and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459(7250):1122–1126PubMedCrossRefGoogle Scholar
  77. Stern A, Doron-Faigenboim A, Erez E, Martz E, Bacharach E, Pupko T (2007) Selecton 2007: advanced models for detecting positive and purifying selection using Bayesian inference approach. Nucleic Acids Res 35:W506–W511PubMedCrossRefGoogle Scholar
  78. Stevens J, Blixt O, Glaser L, Taubenberger JK, Palese P, Paulson JC, Wilson IA (2006) Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. J Mol Biol 355(5):1143–1155PubMedCrossRefGoogle Scholar
  79. Suzuki Y (2004) Negative selection on neutralization epitopes of poliovirus surface proteins: implications for prediction of candidate epitopes for immunization. Gene 328:127–133PubMedCrossRefGoogle Scholar
  80. Suzuki Y (2006) Natural selection on the Influenza virus genome. Mol Biol Evol 23(10):1902–1911PubMedCrossRefGoogle Scholar
  81. Suzuki Y, Gojobori T (1999) A method for detecting positive selection at single amino acid sites. Mol Biol Evol 16(10):1315–1328PubMedCrossRefGoogle Scholar
  82. Suzuki Y, Gojobori T (2001) Positively selected amino acid sites in the entire coding region of hepatitis C virus subtype 1b. Gene 276:83–87PubMedCrossRefGoogle Scholar
  83. Suzuki Y, Nei M (2002) Origin and evolution of influenza virus hemagglutinin genes. Mol Biol Evol 19:501–509PubMedCrossRefGoogle Scholar
  84. Swanson WJ, Nielsen R, Yang Q (2003) Pervasive adaptive evolution in mammalian fertilization proteins. Mol Biol Evol 20:18–20PubMedCrossRefGoogle Scholar
  85. Tamura K, Nei M (1993) Estimation of the number of nucleotide substituions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 11:715–724Google Scholar
  86. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739PubMedCrossRefGoogle Scholar
  87. Thomas PG, Keating R, Hulse-Post DJ, Doherty PC (2006) Cell mediated protection in influenza infection. Emerg Infect Dis 12:48–54PubMedCrossRefGoogle Scholar
  88. Thomas PG, Brown SA, Keating R, Yue W, Morris MY, So J, Webby RJ, Doherty PC (2007) Hidden epitopes emerge in secondary influenza virus-specific CD8+ T cell responses. J Immunol 178:3091–3098PubMedGoogle Scholar
  89. Trojan A, Urosevic M, Hummerjohann J, Giger R, Schanz U, Stahel RA (2003) Immune reactivity against a novel HLA-A3-restricted influenza virus peptide identified by predictive algorithms and interferon-gamma quantitative PCR. J Immunol 26:41–46Google Scholar
  90. Tu W, Mao H, Zheng J, Liu Y, Chiu SS, Qin G, Chan PL, Lam KT, Guan J, Zhang L, Guan Y, Yuen KY, Peiris JS, Lau YL (2010) Cytotoxic T lymphocytes established by seasonal human influenza cross-react against 2009 pandemic H1N1 influenza virus. J Virol 84(13):6527–6535PubMedCrossRefGoogle Scholar
  91. Tumpey TM, Maines TR, Van-Hoeven N, Glaser L, Solorzano A, Pappas C, Cox NJ, Swayne DE, Palese P, Katz JM, Garcia-Sastre A (2007) A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 315(5812):655–659PubMedCrossRefGoogle Scholar
  92. Venkatramani L, Bochkareva E, Lee JT, Gulati U, Laver WG, Bochkarev A, Air GM (2006) An epidemiologically significant epitope of a 1998 human influenza virus neuraminidase forms a highly hydrated interface in the NA-antibody complex. J Mol Biol 356:651–663PubMedCrossRefGoogle Scholar
  93. Vita R, Zarebski L, Greenbaum JA, Emami H, Hoof I, Salimi N, Damle R, Sette A, Peters B (2010) The immune epitope database 2.0. Nucleic Acids Res 38(Database issue):D854–D862Google Scholar
  94. Webby RJ, Webster RG (2003) Are we ready for pandemic influenza? Science 302(5650):1519–1522PubMedCrossRefGoogle Scholar
  95. Webster RG, Kawaoka Y, Bean WJ (1986) Vaccination as a strategy to reduce the emergence of amantadine- and rimantadine-resistant strains of A/chick/Pennsylvania/83 (H5N2) influenza virus. J Antimicrob Chemother 18:157–164PubMedGoogle Scholar
  96. Wiley DC, Wilson IA, Skehel JJ (1981) Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289:373–378PubMedCrossRefGoogle Scholar
  97. Wolf YI, Viboud C, Holmes EC, Koonin EV, Lipman DJ (2006) Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biol Direct 1:34PubMedCrossRefGoogle Scholar
  98. World Health Organization (WHO) (1980) A revision of the system of nomenclature for influenza viruses: a WHO memorandum. Bull WHO 58:585–591Google Scholar
  99. Wu F, Yuan X-Y, Li J, Chen Y-H (2009) The co-administration of CpG–ODN influenced protective activity of influenza M2e vaccine. Vaccine 27:4320–4324PubMedCrossRefGoogle Scholar
  100. Yang Z, Bielawski JP (2000) Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15(12):496–503PubMedCrossRefGoogle Scholar
  101. Yang Z, Nielsen R, Goldman N, Pedersen AM (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155:431–449PubMedGoogle Scholar
  102. Yang J, Mai D, LaFond RE, Gates TJ, James EA, Malhotra U, Kwok WW (2011) H1N1 influenza, H9N2 influenza, yellow fever virus, and west nile virus specific CD4+ T cells epitopes restricted by various DR alleles. Available from http://www.immuneepitope.org/assayId/1816085
  103. Zamarin D, Ortigozza MB, Palese P (2006) Influenza A virus PB1–F2 protein contributes to viral pathogenesis in mice. J Virol 80(16):7976–7983PubMedCrossRefGoogle Scholar
  104. Zebedee SL, Lamb RA (1988) Influenza A virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. J Virol 62:2762–2772PubMedGoogle Scholar
  105. Zhao R, Cui S, Guo L, Wu C, Gonzalez R, Paranhos-Baccalà G, Vernet G, Wang J, Hung T (2011) Identification of a highly conserved h1 subtype-specific epitope with diagnostic potential in the hemagglutinin protein of influenza a virus. PLoS One 6:e23374PubMedCrossRefGoogle Scholar
  106. Zharikova D, Mozdzanowska K, Feng J, Zhang M, Gerhard W (2005) Influenza type A virus escape mutants emerge in vivo in the presence of antibodies to the ectodomain of matrix protein-2. J Virol 79:6644–6654PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Sri Paramakalyani Centre for Environmental SciencesManonmaniam Sundaranar UniversityAlwarkurichiIndia
  2. 2.Structural Bioinformatics Laboratory, Department of BiosciencesÅbo Akademi UniversityTurkuFinland

Personalised recommendations