Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:7163–7722
Google Scholar
Amos W, Wilmer JW, Fullard K, Burg TM, Croxall JP, Bloch D, Coulson T (2001) The influence of parental relatedness on reproductive success. Proc Roy Soc Lond B Biol 268:2021–2027
CAS
Google Scholar
Aparicio JM, Ortego J, Cordero PJ (2006) What should we weigh to estimate heterozygosity, alleles or loci? Mol Ecol 15:4659–4665
CAS
PubMed
Google Scholar
Aparicio JM, Ortego J, Cordero PJ (2007) Can a simple algebraic analysis predict markers-genome heterozygosity 12 correlations? J Hered 98:93–96
CAS
PubMed
Google Scholar
Bäckström A (1995) Sävars bruksepok. In: Skogshistoriska essäer—skrivna av eleverna på kursen. “Skogens och skogsbruketshistoria”, SLU, Umeå, pp 47–51
Balloux F, Amos W, Coulson T (2004) Does heterozygosity estimate inbreeding in real populations? Mol Ecol 13(14):3021–3031
CAS
PubMed
Google Scholar
Booy G, Hendriks RJJ, Smulders MJM, Van Groenendael JM, Vosman B (2000) Genetic diversity and the survival 18 of populations. Plant Biol 2:379–395
Google Scholar
Boys J, Cherry M, Dayanandan S (2005) Microsatellite analysis reveals genetically distinct populations of red pine (Pinus resinosa Pinaceae). Am J Bot 92:833–841
CAS
PubMed
Google Scholar
Britten HB (1996) Meta-analyses of the association between multilocus heterozygosity and fitness. Evolution 50(22):2158–2164
PubMed
Google Scholar
Bush RM, Smouse PE (1991) The impact of electrophoretic genotype on life-history traits in Pinus taeda. Evolution 45:481–498
PubMed
Google Scholar
Bush RM, Smouse PE, Ledig FT (1987) The fitness consequences of multiple-locus heterozygosity -the 26 relationship between heterozygosity and growth-rate in Pitch pine (Pinus rigida Mill). Evolution 41:78727–79828
Google Scholar
Chapman JR, Nakagawa S, Coltman DW, Slate J, Sheldon BC (2009) A quantitative review of heterozygosity-fitness correlations in animal populations. Mol Ecol 18:2746–2765
CAS
PubMed
Google Scholar
Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268
Google Scholar
Charlesworth B, Charlesworth D (1999) The genetic basis of inbreeding depression. Genet Res 74:329–340
CAS
PubMed
Google Scholar
Coltman DW, Slate J (2003) Microsatellite measures of inbreeding: a meta-analysis. Evolution 57:971–983
CAS
PubMed
Google Scholar
Coulon A (2010) GENHET: an easy-to-use R function to estimate individual heterozygosity. Mol Ecol Resour 10:167–169
CAS
PubMed
Google Scholar
Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39:1–38
Google Scholar
Deng HW, Fu YX (1998) Conditions for positive and negative correlations between fitness and heterozygosity in equilibrium populations. Genetics 148:1333–1340
CAS
PubMed
PubMed Central
Google Scholar
Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50
CAS
Google Scholar
Farris MA, Mitton JB (1984) Population density, outcrossing rate, and heterozygote superiority in Ponderosa pine. Evolution 38:1151–1154
PubMed
Google Scholar
Franklin EC (1970) Survey of mutant forms and inbreeding depression in species of the family Pinaceae. In: USDA Forest Service Research Paper SE-61, June 1970
García-Gil MR, Francois O, Kamruzzahan S, Waldmann P (2009) Joint analysis of spatial genetic structure and inbreeding in a managed population of Scots pine. Heredity 103:90–96
PubMed
Google Scholar
Jourdan-Pineau H, Folly J, Crochet PA, David P (2012) Testing the influence of family structure and outbreeding depression on heterozygosity-fitness correlations in small populations. 66:3624–3631
Google Scholar
Kärkkäinen K, Savolainen O, Koski V (2000) Why do plants abort so many developing seeds: bad offspring or bad maternal gentoypes? Evol Ecol 13:305–317
Google Scholar
Knowles P, Grant MC (1981) Genetic patterns associated with growth variability in Ponderosa pine. Am J Bot 68:942–946
Google Scholar
Koski V (1970) A study of pollen dispersal as a mechanism of gene flow in conifers. Metsatieteellisen tutkimuslaitoksen julkaisuja 70:1–78
Google Scholar
Koski V (1971) Embryonic lethals of Picea abies and Pinus sylvestris. Communicationes Instituti Forestalis Fenniae 75: 30
Ledig FT, Guries RP, Bonefeld BA (1983) The relation of growth to heterozygosity in pitch pine. Evolution 37:1227–1238
PubMed
Google Scholar
Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952
Google Scholar
Lippman ZB, Zamir D (2006) Heterosis: revisiting the magic. Trends Genet 23:60–66
PubMed
Google Scholar
Lunn D, Spiegelhalter D, Thomas A, Best N (2009) The BUGS project: evolution, critique and future directions. Stat Med 28:3049–3067
PubMed
Google Scholar
Lynch M (1991) The genetic interpretation of inbreeding depression and outbreeding depression. Evolution 45:622–629
PubMed
Google Scholar
Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland
Google Scholar
Mena-Ali J, Keser LH, Stephenson AG (2008) Inbreeding depression in Solanum carolinense (Solanaceae), a species with a plastic self-incompatibility response. BMC Evol Biol 8:10
PubMed
PubMed Central
Google Scholar
Mimura M, Aitken SN (2007) Increased selfing and decreased effective pollen donor number in peripheral relative to central populations in Picea sitchensis (Pinaceae). Am J Bot 94:991–998
PubMed
Google Scholar
Mirov NT (1967) The genus Pinus, p 602
Mitton JB, Andalora R (1981) Genetic and morphological relationships between Blue spruce, Picea pungens, and Engelmann spruce, Picea engelmannii, in the Colorado front range. Can J Bot 59:2088–2094
Google Scholar
Mosseler A, Major JE, Rajora OP (2003) Old-growth red spruce forests as reservoirs of genetic diversity and reproductive fitness. Theor Appl Genet 106:931–937
CAS
PubMed
Google Scholar
Pemberton J, Coltman D, Coulson T, Slate J (1999) Using microsatellites to measure the fitness consequences of inbreeding and outbreeding. In: Goldstein B, Shclotterer C (eds) Microsatellites: evolution and applications. Oxford university press, New York, pp 151–164
Google Scholar
R Development Core Team (2009) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna
Google Scholar
Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237
Google Scholar
Ritland K (2002) Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:221–228
PubMed
Google Scholar
Robledo-Arnuncio JJ, Alia R, Gil L (2004) Increased selfing and correlated paternity in a small population of a predominantly outcrossing conifer, Pinus sylvestris. Mol Ecol 13:2567–2577
CAS
PubMed
Google Scholar
Roles AJ, Conner JK (2008) Fitness effects of mutation accumulation in a natural outbred population of wild radish (Raphanus raphanistrum): comparison of field and greenhouse environments. Evolution 62:1066–1075
PubMed
Google Scholar
Rousset F (2008) GENEPOP ‘ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106
PubMed
Google Scholar
Rudin D, Eriksson G, Rasmuson M (1977) Inbreeding in a seed tree stand of Pinus sylvestris L, in northern Sweden, a study by the aid of the isozyme technique. Rapporter och Uppsatser, Institutionen for Skogsgenetik, p 45
Google Scholar
Sarvas R (1962) Investigations on the flowering and seed crop of Pinus silvestris. Commun Inst Forest Fenn 53:1198
Google Scholar
Savolainen O, Hedrick P (1995) Heterozygosity and fitness -no association in scots pine. Genetics 140:755–766
CAS
PubMed
PubMed Central
Google Scholar
Service PM, Rose MR (1985) Genetic covaration among life-history components: the effect of novel environments. Evolution 39:943–945
PubMed
Google Scholar
Shea KL (1989) The relationship between heterozygosity and fitness in Engelmann spruce and Subalpine fir. Am J Bot 76:153–154
Google Scholar
Slate J, David P, Dodds KG, Veenvliet BA, Glass BC, Broad TE, McEwan JC (2004) Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255–265
CAS
PubMed
Google Scholar
Sorensen F (1969) Embryonic genetic load in coastal Douglas fir, Pseudotsuga Menziesii Var, Menziesii. Am Nat 103:389–398
Google Scholar
Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J Roy Stat Soc B 64:583–640
Google Scholar
Strauss SH (1986) Heterosis at allozyme loci under inbreeding and crossbreeding in Pinus attenuata. Genetics 113:115–134
CAS
PubMed
PubMed Central
Google Scholar
Strauss SH, Libby WJ (1987) Allozyme heterosis in radiata pine is poorly explained by overdominance. Am Nat 130:879–890
Google Scholar
Szulkin M, Bierne N, David P (2010) Heterozygosity-fitness correlations: a time for reappraisal. Evolution 64:1202–1217
PubMed
Google Scholar
Tsitrone A, Rousset F, David P (2001) Heterosis, marker mutational processes and population inbreeding history. Genetics 159:1845–1859
CAS
PubMed
PubMed Central
Google Scholar
Vogl C, Karhu A, Moran G, Savolainen O (2002) High resolution analysis of mating systems: inbreeding in natural populations of Pinus radiata. J Evol Biol 15:433–439
CAS
Google Scholar