Skip to main content
Log in

The RING-H2 finger gene 1 (RHF1) encodes an E3 ubiquitin ligase and participates in drought stress response in Nicotiana tabacum

Genetica Aims and scope Submit manuscript

Abstract

Drought is one of the most important limiting factors for plant growth and development. To identify genes required for drought stress response in tobacco, one highly induced mRNA encoding a RING-H2 Finger gene (RHF1) was isolated by mRNA differential display. The full-length NtRHF1 encodes a protein of 273 amino acids and contains a single C3H2C3-type RING motif in its C-terminal region. NtRHF1 is an ortholog of Arabidopsis SDIR1 (salt- and drought-induced RING finger 1) (73 % identity to AtSDIR1). The recombinant NtRHF1 protein purified from E. coli exhibited an in vitro E3 ubiquitin ligase activity. Real-time quantitative PCR analysis indicated that the transcript levels of NtRHF1 were higher in aerial tissues and were markedly up-regulated by drought stress. Overexpression of NtRHF1 enhanced drought tolerance in transgenic tobacco plants while RNA silencing of NtRHF1 reduced drought tolerance. Further expression analysis by real-time PCR indicated that NtRHF1 participates in drought stress response possibly through transcriptional regulation of downstream stress-responsive genes NtLEA5, NtERD10C, NtAREB, and NtCDPK2 in tobacco. Together, these results demonstrated that NtRHF1 plays a positive role in drought stress tolerance possibly through transcriptional regulation of several stress-responsive marker genes in tobacco. This study will facilitate to improve our understanding of molecular and functional properties of plant RING-H2 finger proteins and to provide genetic evidence on the involvement of the RING-H2 E3 ligase in drought stress response in Nicotiana tabacum plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Bae H, Kim SK, Cho SK, Kang BG, Kim WT (2011) Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.). Plant Sci 180:775–782

    CAS  PubMed  Google Scholar 

  • Bopopi JM, Vandeputte OM, Himanen K, Mol A, Vaessen Q, El Jaziri M, Baucher M (2010) Ectopic expression of PtaRHE1, encoding a poplar RING-H2 protein with E3 ligase activity, alters plant development and induces defense-related responses. J Exp Bot 61:297–310

    CAS  Google Scholar 

  • Borden KL (2000) RING domains: master builders of molecular scaffolds? J Mol Biol 295:1103–1112

    CAS  PubMed  Google Scholar 

  • Boyer JS (1982) Plant productivity and environment. Science 218:443–448

    CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principal of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  • Devoto A, Muskett PR, Shirasu K (2003) Role of ubiquitination in the regulation of plant defence against pathogens. Curr Opin Plant Biol 6:307–311

    CAS  PubMed  Google Scholar 

  • Dreher K, Callis J (2007) Ubiquitin, hormones and biotic stress in plants. Ann Bot (Lond) 99:787–822

    CAS  Google Scholar 

  • Du QL, Cui WZ, Zhang CH, Yu DY (2010) GmRFP1 encodes a previously unknown RING-type E3 ubiquitin ligase in Soybean (Glycine max). Mol Biol Rep 37:685–693

    CAS  PubMed  Google Scholar 

  • Gao T, Wu Y, Zhang Y, Liu L, Ning Y, Wang D, Tong H, Chen S, Chu C, Xie Q (2011) OsSDIR1 overexpression greatly improves drought tolerance in transgenic rice. Plant Mol Biol 76:145–156

    CAS  PubMed  Google Scholar 

  • Hasegawa M, Bressan R, Pardo JM (2000) The dawn of plant salt tolerance genetics. Trends Plant Sci 5:317–319

    CAS  PubMed  Google Scholar 

  • Hellmann H, Estelle M (2002) Plant development: regulation by protein degradation. Science 297:793–797

    CAS  PubMed  Google Scholar 

  • Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052

    CAS  PubMed  Google Scholar 

  • Huang XS, Liu JH, Chen XJ (2010) Overexpression of PtrABF gene, a bZIP transcription factor isolated from Poncirus trifoliata, enhances dehydration and drought tolerance in tobacco via scavenging ROS and modulating expression of stress-responsive genes. BMC Plant Biol 10:230

    PubMed  PubMed Central  Google Scholar 

  • Hundertmark M, Kincha DK (2008) LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics 9:118

    PubMed  PubMed Central  Google Scholar 

  • Jia X, Xu C, Jing R, Li R, Mao X, Wang J, Chang X (2008) Molecular cloning and characterization of wheat calreticulin (CRT) gene involved in drought-stressed responses. J Exp Bot 59:739–751

    CAS  PubMed  Google Scholar 

  • Kang JY, Choi HI, Im MY, Kim SY (2002) Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14:343–357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45:346–350

    CAS  PubMed  Google Scholar 

  • Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13:889–905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ko JH, Yang SH, Han KH (2006) Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 47:343–355

    CAS  PubMed  Google Scholar 

  • Kovacs D, Kalmar E, Torok Z, Tompa P (2008) Chaperone activity of ERD10 and ERD14, two disordered stress-related plant proteins. Plant Physiol 147:381–390

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Jiang H, Bu Q, Zhao Q, Sun J, Xie Q, Li C (2011) The Arabidopsis RING Finger E3 Ligase RHA2b Acts Additively with RHA2a in Regulating Abscisic Acid Signaling and Drought Response. Plant Physiol 156:550–563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livaka KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) Method. Methods 25:402–408

    Google Scholar 

  • Lovering R, Hanson IM, Borden KL, Martin S, O’Reilly NJ, Evan GI, Rahman D, Pappin DJ, Trowsdale J, Freemont PS (1993) Identification and preliminary characterization of a protein motif related to the zinc finger. Proc Natl Acad Sci USA 90:2112–2116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo LJ (2010) Breeding for water-saving and drought- resistance rice (WDR) in China. J Exp Bot 61:3509–3517

    CAS  PubMed  Google Scholar 

  • Moon J, Parry G, Estelle M (2004) The ubiquitin-proteasome pathway and plant development. Plant Cell 16:3181–3195

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ning Y, Jantasuriyarat C, Zhao Q, Zhang H, Chen S, Liu J, Liu L, Tang S, Park CH, Wang X, Liu X, Dai L, Xie Q, Wang GL (2011) The SINA E3 ligase OsDIS1 negatively regulates drought response in rice. Plant Physiol 157:242–255

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu MY, Cho SK, Kim WT (2010) The Arabidopsis C3H2C3-type RING E3 ubiquitin ligase AtAIRP1 is a positive regulator of an abscisic acid-dependent response to drought stress. Plant Physiol 154:1983–1997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saibo NJM, Lourenço T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 103:609–623

    CAS  PubMed  Google Scholar 

  • Santner A, Estelle M (2010) The ubiquitin-proteasome system regulates plant hormone signaling. Plant J 61:1029–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saurin AJ, Borden KL, Boddy MN, Freemont PS (1996) Does this have a familiar RING? Trends Biochem Sci 21:208–214

    CAS  PubMed  Google Scholar 

  • Schwechheimer C, Schwager K (2004) Regulated proteolysis and plant development. Plant Cell Rep 23:353–364

    CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    CAS  PubMed  Google Scholar 

  • Smalle J, Vierstra RD (2004) The ubiquitin 26 s proteasome proteolytic pathway. Annu Rev Plant Biol 55:555–590

    CAS  PubMed  Google Scholar 

  • Stone SL, Hauksdottir H, Troy A, Herschleb J, Kraft E, Callis J (2005) Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol Biol Evol 28:2731–2739

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vierstra RD (2009) The ubiquitin-26S proteasome system at the nexus of plant biology. Nat Rev Mol Cell Biol 10:385–397

    CAS  PubMed  Google Scholar 

  • Witte CP, Keinath N, Dubiella U, Demoulière R, Seal A, Romeis T (2010) Tobacco calcium-dependent protein kinases are differentially phosphorylated in vivo as part of a kinase cascade that regulates stress response. J Biol Chem 285:9740–9748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Z, Liu Q, Wu J, Ding J (2012) ZmRFP1, the putative ortholog of SDIR1, encodes a RING-H2 E3 ubiquitin ligase and responds to drought stress in an ABA-dependent manner in maize. Gene 495:146–153

    CAS  PubMed  Google Scholar 

  • Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, Chua NH (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419:167–170

    CAS  PubMed  Google Scholar 

  • Zeng LR, Qu S, Bordeos A, Yang C, Baraoidan M, Yan H, Xie Q, Nahm BH, Leung H, Wang GL (2004) Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity. Plant Cell 16:2795–2808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng LR, Vega-Sanchez ME, Zhu T, Wang GL (2006) Ubiquitination-mediated protein degradation and modification: an emerging theme in plant-microbe interactions. Cell Res 16:413–426

    CAS  PubMed  Google Scholar 

  • Zhang YY, Yang CW, Li Y, Zheng NY, Chen H, Zhao QZ, Gao T, Guo HS, Xie Q (2007) SDIR1 is a RING finger E3 ligase that positively regulates stress-responsive abscisic acid signaling in Arabidopsis. Plant Cell 19:1912–1929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the science and technology R&D projects from Henan Tobacco Company (grants HYKJ201010 and HYKJ201202). The authors would like to thank ABRC for generously providing pHB2 expression vector.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongliang Xia.

Additional information

Zongliang Xia and Xinhong Su contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, Z., Su, X., Liu, J. et al. The RING-H2 finger gene 1 (RHF1) encodes an E3 ubiquitin ligase and participates in drought stress response in Nicotiana tabacum . Genetica 141, 11–21 (2013). https://doi.org/10.1007/s10709-013-9702-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-013-9702-0

Keywords

Navigation