, Volume 140, Issue 10–12, pp 497–504 | Cite as

Genome size and chromosome number in velvet worms (Onychophora)

  • Nicholas W. Jeffery
  • Ivo S. Oliveira
  • T. Ryan Gregory
  • David M. Rowell
  • Georg Mayer


The Onychophora (velvet worms) represents a small group of invertebrates (~180 valid species), which is commonly united with Tardigrada and Arthropoda in a clade called Panarthropoda. As with the majority of invertebrate taxa, genome size data are very limited for the Onychophora, with only one previously published estimate. Here we use both flow cytometry and Feulgen image analysis densitometry to provide genome size estimates for seven species of velvet worms from both major subgroups, Peripatidae and Peripatopsidae, along with karyotype data for each species. Genome sizes in these species range from roughly 5–19 pg, with densitometric estimates being slightly larger than those obtained by flow cytometry for all species. Chromosome numbers range from 2n = 8 to 2n = 54. No relationship is evident between genome size, chromosome number, or reproductive mode. Various avenues for future genomic research are presented based on these results.


C-value Nuclear DNA content Peripatidae Peripatopsidae Flow cytometry Feulgen image analysis densitometry Karyotype 



The authors are thankful to Susann Kauschke for maintaining the animals and to Noel N. Tait, Alfredo Hannemann Wieloch and Alvaro Herrera Villalobos for their help with permits. The staff of Forests NSW (New South Wales, Australia), the Instituto Nacional de Biodiversidad (INBio, Heredia, Costa Rica), the National System of Conservation Areas (SINAC, MINAE, Costa Rica), and the Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio, Brazil) are gratefully acknowledged for providing collecting and export permits. I.S.O. is supported by a PhD fellowship of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq: 290029/2010-4). G.M. is a Research Group Leader supported by the Emmy Noether Programme of the German Research Foundation (DFG; grant Ma 4147/3-1). N.W.J. has been supported by Natural Sciences and Engineering Research Council of Canada (NSERC) postgraduate scholarships and an Ontario Graduate Scholarship. T.R.G. is supported by an NSERC Discovery Grant.


  1. Abràmoff MD, Magalhães PJ, Ram JS (2004) Image processing with imageJ. Biophotonics Int 11:36–42Google Scholar
  2. Allwood J, Gleeson D, Mayer G, Daniels S, Beggs JR, Buckley TR (2010) Support for vicariant origins of the New Zealand Onychophora. J Biogeogr 37:669–681CrossRefGoogle Scholar
  3. Ambrožová K, Mandáková T, Bureš P, Neumann P, Leitch IJ, Koblížková A, Macas J, Lysak MA (2011) Diverse retrotransposon families and an AT-rich satellite DNA revealed in giant genomes of Fritillaria lilies. Ann Bot Lond 107:255–268CrossRefGoogle Scholar
  4. Anderson DT (1973) Embryology and phylogeny in annelids and arthropods. In: Kerkut GA (ed) Pergamon Press, OxfordGoogle Scholar
  5. Bennett MD, Leitch IJ (2005) Genome size evolution in plants. In: Gregory TR (ed) The evolution of the genome. Elsevier, San Diego, pp 89–162CrossRefGoogle Scholar
  6. Campbell LI, Rota-Stabelli O, Edgecombe GD, Marchioroc T, Longhorna SJ, Telford MJ, Philippe H, Rebecchi L, Peterson KJ, Pisani D (2011) MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda. Proc Natl Acad Sci USA 108:15920–15924PubMedCrossRefGoogle Scholar
  7. Daniels SR, Picker MD, Cowlin RM, Hamer ML (2009) Unravelling evolutionary lineages among South African velvet worms (Onychophora: Peripatopsis) provides evidence for widespread cryptic speciation. Biol J Linn Soc 97:200–216CrossRefGoogle Scholar
  8. Doležel J, Binarová P, Lucretti S (1989) Analysis of nuclear DNA content in plant cells by flow cytometry. Biol Plantarum 31:113–120CrossRefGoogle Scholar
  9. Doležel J, Bartoš J, Voglmayr H, Greilhuber J (2003) Nuclear DNA content and genome size of trout and human. Cytom Part A 51:127–128Google Scholar
  10. Dufresne F, Jeffery N (2011) A guided tour of large genome size in animals: what we know and where we are heading. Chromosome Res 19:925–938PubMedCrossRefGoogle Scholar
  11. Evans R (1901) On the malayan species of Onychophora. Part II.—the development of Eoperipatus weldoni. Q J Microsc Sci 45:41–88Google Scholar
  12. Garagna S, Rebecchi L, Guidi A (1996) Genome size variation in Tardigrada. Zool J Linn Soc-Lond 116:115–121CrossRefGoogle Scholar
  13. Gregory TR (2001a) Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biol Rev 76:65–101PubMedCrossRefGoogle Scholar
  14. Gregory TR (2001b) The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cell Mol Dis 27:830–843CrossRefGoogle Scholar
  15. Gregory TR (2002) Genome size and developmental complexity. Genetica 115:131–146PubMedCrossRefGoogle Scholar
  16. Gregory TR (2012) Animal genome size database.
  17. Gregory TR, Mable BK (2005) Polyploidy in animals. In: Gregory TR (ed) The evolution of the genome. Elsevier Academic Press, Massachusetts, pp 427–517CrossRefGoogle Scholar
  18. Gregory TR, Hebert PDN, Kolasa J (2000) Evolutionary implications of the relationship between genome size and body size in flatworms and copepods. Heredity 84:201–208PubMedCrossRefGoogle Scholar
  19. Hardie DC, Gregory TR, Hebert PDN (2002) From pixels to picograms: a beginners’ guide to genome quantification by Feulgen image analysis densitometry. J Histochem Cytochem 50:735–749PubMedCrossRefGoogle Scholar
  20. Hart MW, Grosberg RK (2009) Caterpillars did not evolve from onychophorans by hybridogenesis. Proc Natl Acad Sci USA 106:19906–19909PubMedCrossRefGoogle Scholar
  21. Kelly LJ, Leitch IJ (2011) Exploring giant plant genomes with next-generation sequencing technology. Chromosome Res 19:939–953PubMedCrossRefGoogle Scholar
  22. Mayer G, Whitington PM (2009) Neural development in Onychophora (velvet worms) suggests a step-wise evolution of segmentation in the nervous system of Panarthropoda. Dev Biol 335:263–275PubMedCrossRefGoogle Scholar
  23. McDonald DE, Ruhberg H, Daniels S (2012) Two new Peripatopsis species (Onychophora: Peripatopsidae) from the Western Cape province, South Africa. Zootaxa 3380:55–68Google Scholar
  24. Monge-Najera J (1995) Phylogeny, biogeography and reproductive trends in the Onychophora. Zool J Linn Soc-Lond 114:21–60CrossRefGoogle Scholar
  25. Mora M, Herrera A, León P (1996) The genome of Epiperipatus biolleyi (Peripatidae), a Costa Rican onychophoran. Rev Biol Trop 44:153–157Google Scholar
  26. Nielsen C (2012) Animal evolution: interrelationships of the living phyla, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  27. Oliveira IS, Lacorte GA, Fonseca CG, Wieloch AH, Mayer G (2011) Cryptic speciation in Brazilian Epiperipatus (Onychophora: Peripatidae) reveals an underestimated diversity among the peripatid velvet worms. PLoS ONE 6:e19973PubMedCrossRefGoogle Scholar
  28. Oliveira IS, Read VMSJ, Mayer G (2012a) A world checklist of Onychophora (velvet worms), with notes on nomenclature and status of names. ZooKeys 211:1–70CrossRefGoogle Scholar
  29. Oliveira IS, Franke FA, Hering L, Schaffer S, Rowell DM, Weck-Heimann A, Monge-Nájera J, Morera-Brenes B, Mayer G (2012b) Unexplored character diversity in Onychophora (velvet worms): a comparative study of three peripatid species. PLoS ONE 7:e51220CrossRefGoogle Scholar
  30. R Core Team (2012) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. ISBN 3-900051-07-0
  31. Reid AL (1996) Review of the Peripatopsidae (Onychophora) in Australia, with comments on peripatopsid relationships. Invertebr Taxon 10:663–936CrossRefGoogle Scholar
  32. Robson EA, Lockwood APM, Ralph R (1966) Composition of the blood in Onychophora. Nature 209:533CrossRefGoogle Scholar
  33. Rockman MV, Rowell DM (2002) Episodic chromosomal evolution in Planipapillus: a phylogenetic approach to evolutionary dynamics and speciation. Evolution 56:58–69PubMedCrossRefGoogle Scholar
  34. Rota-Stabelli O, Kayal E, Gleeson D, Daub J, Boore J, Telford M, Pisani D, Blaxter M, Lavrov D (2010) Ecdysozoan mitogenomics: evidence for a common origin of the legged invertebrates, the Panarthropoda. Genome Biol Evol 2:425–440PubMedCrossRefGoogle Scholar
  35. Rowell DM (1985) Complex sex-linked fusion heterozygosity in the Australian huntsman spider Delena cancerides (Araneae: Sparassidae). Chromosoma 93:169–176CrossRefGoogle Scholar
  36. Rowell DM, Rockman MV, Tait NN (2002) Extensive Robertsonian rearrangement: implications for the radiation and biogeography of Planipapillus Reid (Onychophora: Peripatopsidae). J Zool Lond 257:171–179CrossRefGoogle Scholar
  37. Sakamoto Y, Zacaro AA (2009) Levan Tutorial—Step by Step, ViçosaGoogle Scholar
  38. Sun C, Shepard DB, Chong RA, Arriaza JL, Hall K, Castoe TA, Feschotte C, Pollock DD, Mueller RL (2012) LTR retrotransposons contribute to genomic gigantism in plethodontid salamanders. Genome Biol Evol 4:168–183PubMedCrossRefGoogle Scholar
  39. Trewick SA (2000) Mitochondrial DNA sequences support allozyme evidence for cryptic radiation of New Zealand Peripatoides (Onychophora). Mol Ecol 9:269–281PubMedCrossRefGoogle Scholar
  40. von Kennel J (1888) Entwicklungsgeschichte von Peripatus edwardsii Blanch. und Peripatus torquatus n.sp. II. Theil. Arb Inst Würzburg 8:1–93Google Scholar
  41. Walker MH, Tait NN (2004) Studies of embryonic development and the reproductive cycle in ovoviviparous Australian Onychophora (Peripatopsidae). J Zool Lond 264:333–354CrossRefGoogle Scholar
  42. Williamson DI (2009) Caterpillars evolved from onychophorans by hybridogenesis. P Natl Acad Sci USA 106:19901–19905CrossRefGoogle Scholar
  43. Wyngaard GA, Rasch EM, Manning NM, Gasser K, Domangue R (2005) The relationship between genome size, development rate, and body size in copepods. Hydrobiologia 532:123–137CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Nicholas W. Jeffery
    • 1
  • Ivo S. Oliveira
    • 2
  • T. Ryan Gregory
    • 1
  • David M. Rowell
    • 3
  • Georg Mayer
    • 2
  1. 1.Department of Integrative BiologyUniversity of GuelphGuelphCanada
  2. 2.Animal Evolution and Development, Institute of BiologyUniversity of LeipzigLeipzigGermany
  3. 3.Division of Evolution, Ecology and Genetics, Research School of BiologyAustralian National UniversityCanberraAustralia

Personalised recommendations