, Volume 140, Issue 4–6, pp 259–275 | Cite as

Population structure in a wheat core collection and genomic loci associated with yield under contrasting environments

  • Miroslav ZorićEmail author
  • Dejan Dodig
  • Borislav Kobiljski
  • Steve Quarrie
  • Jeremy Barnes


A set of 96 winter wheat accessions sampled from a variety of geographic origins, including cultivars and breeding lines, were characterized with 46 genome-wide SSR loci for genetic diversity and population structure. The genetic diversity within these accessions was examined using a genetic distance-based and a model-based clustering method. The model-based analysis identified an underlying population structure comprising of four distinct sub-populations which corresponded well with distance-based groupings. Information on the population structure is taken into account in an association mapping study of grain yield from a 3-years field trial incorporating fully irrigated, rainfed and drought stress treatments. A total of 21 marker-grain yield associations (P < 0.01) were identified with nine SSR markers. Most associations were detected only in one to three environments (treatment/year combination), with an average R 2 value around 13 %. However, marker gwm484 (on chromosome 2D) was associated with yield in six environments, including irrigated, rainfed and drought stress treatments, suggesting it could be used to improve grain yield across a range of environments. Variation in grain yield at this locus was associated with earliness, early vigour, kernels per spikelet and harvest index. Microsatellite locus psp3200 (on chromosome 6D) was associated with yield in dry and hot environments, which was related to earliness, early vigour, productive tillering and total biomass per plant. Partial least squares regression, with nine environmental factors, showed that precipitation from tillering to maturity was the main environmental factor causing marker × environment associations for grain yield.


Wheat Genetic diversity Population structure Association mapping Grain yield Environmental factors 



We are grateful to Dr. Jean-Luc Jannink for insightful suggestions and to Dr. Marco Maccaferri for critically reviewing this manuscript. This work was supported by a Serbian Ministry of Education and Science grant (award no. TR31005/11 and TR31066) and an EU-FP7 Marie Curie Intra-European Fellowship award to D.D. (Grant Agreement Number 254064).

Supplementary material

10709_2012_9677_MOESM1_ESM.pdf (69 kb)
Supplementary material 1 (PDF 69 kb)


  1. Aastveit A, Martens H (1986) ANOVA interaction interpreted by partial least squares regression. Biometrics 42:829–844CrossRefGoogle Scholar
  2. Austin RB (1980) Physiological limitations to cereals yields and ways of reducing them by breeding. In: Hurd RG, Biscoe PV, Dennis C (eds) Opportunities for increasing crop yields. Association of Applied Biology, Pitman, Boston, pp 3–19Google Scholar
  3. Breseghello F, Sorrells MS (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177. doi: 10.1534/genetics.105.044586 PubMedCrossRefGoogle Scholar
  4. Buckler ES, Thornsberry JM (2002) Plant molecular diversity and applications of genomics. Curr Opin Plant Biol 5:107–111. doi: 10.1016/S1369-5266(02)00238-8 PubMedCrossRefGoogle Scholar
  5. Campbell BT, Baenziger PS, Eskridge KM, Budak H, Streck NA, Weiss A, Gill KS, Erayman M (2004) Using environmental covariates to explain genotype × environment and QTL × environment interactions for agronomic traits on chromosome 3A of wheat. Crop Sci 44:620–627. doi: 10.2135/cropsci2004.0620 Google Scholar
  6. Chao S, Zhang W, Dubcovsky J, Sorrells M (2007) Evaluation of genetic diversity and genome-wide linkage disequilibrium among US wheat (Triticum aestivum L.) germplasm representing different market classes. Crop Sci 47:1018–1030. doi: 10.2135/cropsci2006.06.0434 CrossRefGoogle Scholar
  7. Crossa J, Vargas M, van Eeuwijk FA, Jiang C, Edmeades GO, Hoisington D (1999) Interpreting genotype × environment interaction in tropical maize using linked molecular markers and environmental covariables. Theor Appl Genet 99:611–625. doi: 10.1007/s001220051276 PubMedCrossRefGoogle Scholar
  8. Crossa J, Burgueno J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913. doi: 10.1534/genetics.107.078659 PubMedCrossRefGoogle Scholar
  9. Cuthbert JL, Somers DJ, Brule-Babel AL, Brown PD, Crow GH (2008) Molecular mapping of quantitative trait loci for yield and yield components in spring wheat (Triticum aestivum L.). Theor Appl Genet 117:595–608. doi: 10.1007/s00122-008-0804-5 PubMedCrossRefGoogle Scholar
  10. Dilbirligi M, Erayman M, Campbell BT, Randhawa HS, Baenziger PS, Dweikat I, Gill KS (2006) High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Genomics 88:74–87. doi: 10.1016/j.ygeno.2006.02.001 PubMedCrossRefGoogle Scholar
  11. Dodig D, Quarrie SA, Stanković S, Milijić S, Denčić S (2002) Characterising wheat genetic resources for responses to drought stress. In: Proceedings of the ICID international conference on ‘drought mitigation and prevention of land desertification’, 21–25 April 2002, Bled, Slovenia. 38doc.pdf, CD editionGoogle Scholar
  12. Dodig D, Zorić M, Kobiljski B, Šurlan-Momirović G, Quarrie SA (2010) Assessing drought tolerance and regional patterns of genetic diversity among spring and winter bread wheat using simple sequence repeats and phenotypic data. Crop Pasture Sci 61:812–824. doi: 10.1071/CP10001 CrossRefGoogle Scholar
  13. Dreisigacker S, Zhang P, Warburton ML, Van Ginkel M, Hoisington D, Melchinger AE (2004) SSR and pedigree analyses of genetic diversity among CIMMYT wheat lines targeted to different megaenvironments. Crop Sci 44:381–388. doi: 10.2135/cropsci2004.0381 CrossRefGoogle Scholar
  14. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839. doi: 10.1007/BF00221895 CrossRefGoogle Scholar
  15. Falush D, Stephens M, Prithchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  16. Felsenstein J (1993) PHYLIP (phylogeny inference package). Version 3.5c. Department of Genetics, University of Washington, SeatleGoogle Scholar
  17. Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars: I. Grain yield responses. Aust J Agric Res 29:897–912. doi: 10.1071/AR9780897 CrossRefGoogle Scholar
  18. Flint-Garcia SA, Thuillet AC, Yu JM, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population, a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064. doi: 10.1111/j.1365-313X.2005.02591.x PubMedCrossRefGoogle Scholar
  19. Foulkes MJ, Snape JW, Shearman VJ, Reynolds MP, Gaju O, Sylvester-Bradley R (2007) Genetic progress in yield potential in wheat: recent advances and future prospects. J Agric Sci 145:17–29. doi: 10.1017/S0021859607006740 CrossRefGoogle Scholar
  20. Francia E, Tacconi G, Crosatti C, Barabaschi D, Bulgarelli D, Dall’Aglio E, Vale G (2005) Marker-assisted selection in crop plants. Plant Cell Tissue Organ Cul 82:317–342. doi: 10.1007/s11240-005-2387-z CrossRefGoogle Scholar
  21. Guo Z, Song Y, Zhou R, Ren Z, Jia J (2010) Discovery, evaluation and distribution of haplotypes of the wheat Ppd-D1 gene. New Phytol 185:841–851. doi: 10.1111/j.1469-8137.2009.03099.x PubMedCrossRefGoogle Scholar
  22. Hai L, Wagner C, Friedt W (2007) Quantitative structure analysis of genetic diversity among spring bread wheats (Triticum aestivum L.) from different geographical regions. Genetica 130:213–225. doi: 10.1007/s10709-006-9008-6 PubMedCrossRefGoogle Scholar
  23. Hopwood A, Oldroyd N, Fellows S, Ward R, Owen SA, Sullivan K (1997) Rapid quantification of DNA samples extracted from buccal scrapes prior to DNA profiling. Biotechniques 23:18–20PubMedGoogle Scholar
  24. Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707. doi: 10.1007/s00122-002-0959-4 PubMedCrossRefGoogle Scholar
  25. Islam-Faridi MN, Worland AJ, Law CN (1996) Inhibition of ear emergence time and sensitivity to day-length determined by the group 6 chromosomes of wheat. Heredity 77:572–580. doi: 10.1038/hdy.1996.184 CrossRefGoogle Scholar
  26. Kirigwi FM, Van Ginkel M, Brown-Gedira G, Gill BS, Paulsen GM, Fritz AK (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413. doi: 10.1007/s11032-007-9100-3 CrossRefGoogle Scholar
  27. Kobiljski B, Quarrie SA, Denčić S, Kirby J, Ivegeš M (2002) Genetic diversity of the Novi Sad wheat core collection revealed by microsatellites. Cellular Mol Biol Lett 7:685–694Google Scholar
  28. Kordenaeej A (2008) Mapping QTLs for yield and yield components under drought stress in bread wheat. PhD Thesis, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, AustriaGoogle Scholar
  29. Kuchel H, Williams JK, Langridge P, Eagles HA, Jefferies SP (2007a) Genetic dissection of grain yield in bread wheat. I. QTL analysis. Theor Appl Genet 115:1029–1041. doi: 10.1007/s00122-007-0628-8 PubMedCrossRefGoogle Scholar
  30. Kuchel H, Williams K, Langridge P, Eagles HA, JeVeries SP (2007b) Genetic dissection of grain yield in bread wheat. II. QTL-by-environment interaction. Theor Appl Genet 115:1015–1029. doi: 10.1007/s00122-007-0629-7 PubMedCrossRefGoogle Scholar
  31. Kumar N, Kulwal PL, Balyan HS, Gupta PK (2007) QTL mapping for yield and yield contribution traits in two mapping populations of bread wheat. Mol Breed 19:163–177. doi: 10.1007/s11032-006-9056-8 CrossRefGoogle Scholar
  32. Lafitte HR, Yongsheng G, Yan S, Li ZK (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot 58:169–175. doi: 10.1093/jxb/erl101 PubMedCrossRefGoogle Scholar
  33. Li S, Jia J, Wei X, Zhang X, Li L, Chen H, Fan Y, Sun H, Zhao X, Lei T, Xu Y, Jiang F, Wang H, Li L (2007) A intervarietal genetic map and QTL analysis for yield traits in wheat. Mol Breed 20:167–168. doi: 10.1007/s11032-007-9080-3 CrossRefGoogle Scholar
  34. Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–289. doi: 10.1007/s11032-004-7012-z CrossRefGoogle Scholar
  35. Malosetti M, Voltas J, Romagosa I, Ullrich SE, van Eeuwijk FA (2004) Mixed models including environmental covariables for studying QTL by environment interaction. Euphytica 137:139–145. doi: 10.1023/B:EUPH.0000040511.46388.ef CrossRefGoogle Scholar
  36. Matus IA, Hayes PM (2002) Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats. Genome 45:1095–1106. doi: 10.1139/G02-071 PubMedCrossRefGoogle Scholar
  37. McCartney CA, Somers DJ, Humphreys DG, Lukow O, Ames N, Noll J, Cloutier S, McCallum BD (2005) Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 × ’AC Domain’. Genome 48:870–883. doi: 10.1139/G05-055 PubMedCrossRefGoogle Scholar
  38. McIntyre CL, Mathews KyL, Rattey A, Chapman SC, Drenth J, Ghaderi M, Reynolds M, Shorter R (2010) Molecular detection of genomic regions associated with grain yield and yield-related components in an elite bread wheat cross evaluated under irrigated and rainfed conditions. Theor Appl Genet 120:527–541. doi: 10.1007/s00122-009-1173-4 PubMedCrossRefGoogle Scholar
  39. Minch E, Ruiz-Linares A, Goldstein D, Feldman M, Cavalli-Sforza LL (1997) Microsat: a computer program for calculating various statistics on microsatellite allele data. ver. 1.5d. Stanford University, Stanford CA, USAGoogle Scholar
  40. Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855. doi: 10.1111/j.1523-1739.1998.96489.x CrossRefGoogle Scholar
  41. Piepho HP (2000) A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. Genetics 156:2043–2050PubMedGoogle Scholar
  42. Pinto RS, Reynolds MP, Mathews KL, McIntyre CL, Olivares-Villegas JJ, Chapman SC (2010) Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theor Appl Genet 121:1001–1021. doi: 10.1007/s00122-010-1351-4 PubMedCrossRefGoogle Scholar
  43. Prasad B, Babar MA, Xu XY, Bai GH, Klatt AR (2009) Genetic diversity in the U.S. hard red winter wheat cultivars as revealed by microsatellite markers. Crop Pasture Sci 60:16–24. doi: 10.1071/CP08052 CrossRefGoogle Scholar
  44. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  45. Quarrie SA, Dodig D, Pekić S, Kirby J, Kobiljski B (2003) Prospects for marker-assisted selection of improved drought responses in wheat. Bul J Plant Physiol, Special Issue, (Proceedings of the European Workshop on Environmental Stress and Sustainable Agriculture, Varna, Bulgaria) pp 83–95Google Scholar
  46. Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti MC, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880. doi: 10.1007/s00122-004-1902-7 PubMedCrossRefGoogle Scholar
  47. Quarrie SA, Dodig D, Kobiljski B, Kandić V, Savić J, Rančić D, Pekić Quarrie S (2011) Improving wheat yields using association mapping. In: Proceedings of the international scientific symposium of agriculture ‘Agrosym Jahorina 2011’, 10–12 November 2011, Jahorina, Bosnia and Herzegovina, 2–8. CD edition.
  48. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  49. Rebetzke GJ, Ellis MH, Bonnett DG, Richards RA (2007) Molecular mapping of genes for coleoptile growth in bread wheat (Triticum aestivum L.). Theor Appl Genet 114:1173–1183. doi: 10.1007/s00122-007-0509-1 PubMedCrossRefGoogle Scholar
  50. Reimer SO, Pozniak CJ, Clarke FR, Clarke JM, Somers DJ, Knox RE, Singh AK (2008) Association mapping of yellow pigment in an elite collection of durum wheat cultivars and breeding lines. Genome 51:1016–1025. doi: 10.1139/G08-083 PubMedCrossRefGoogle Scholar
  51. Reynolds MP, Borlaug NE (2006) Impacts of breeding on international collaborative wheat improvement. J Agric Sci 144:3–17. doi: 10.1017/S0021859606005867 CrossRefGoogle Scholar
  52. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  53. Rousset F (2008) Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resources 8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x
  54. Snape JW, Laurie DA, Worland AJ (1998) Understanding the genetics of abiotic stress responses in cereals and possible strategies for their amelioration. Aspects Appl Biol 50:9–14Google Scholar
  55. Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman, San FranciscoGoogle Scholar
  56. Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114. doi: 10.1007/s00122-004-1740-7 PubMedCrossRefGoogle Scholar
  57. Somers DJ, Banks T, DePauw R, Fox S, Clarke J, Pozniak C, McCartney C (2007) Genome-wide linkage disequilibrium analysis in bread wheat and durum wheat. Genome 50:557–567. doi: 10.1139/G07-031 PubMedCrossRefGoogle Scholar
  58. Stich B, Melchinger AE (2010) An introduction to association mapping in plants. CAB Rev Perspect Agric Veterinary Sci Nutr Nat Resour 5:1–9. doi: 10.1079/PAVSNNR20105039 Google Scholar
  59. Stich B, Piepho H-P, Schulz B, Melchinger AE (2008) Multi-trait association mapping in sugar beet (Beta vulgaris L.). Theor Appl Genet 117:947–954. doi: 10.1007/s00122-008-0834-z PubMedCrossRefGoogle Scholar
  60. Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J Roy Statist Soc Ser B 36:111–147Google Scholar
  61. Vargas M, Crossa J, Sayre K, Reynolds M, Ramirez ME, Talbot M (1998) Interpreting genotype × environment interaction in wheat by partial least squares regression. Crop Sci 38:679–689CrossRefGoogle Scholar
  62. Vargas M, Eeuwijk FA, Crossa J, Ribaut J-M (2006) Mapping QTLs and QTL × environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor Appl Genet 112:1009–1023. doi: 10.1007/s00122-005-0204-z CrossRefGoogle Scholar
  63. von Korff M, Grando S, Del Greco A, This D, Baum M, Ceccarelli S (2008) Quantitative trait loci associated with adaptation to Mediterranean dryland conditions in barley. Theor Appl Genet 117:653–669. doi: 10.1007/s00122-008-0787-2 CrossRefGoogle Scholar
  64. Weir BS, Hill WG (2002) Estimating F-statistics. Annu Rev Genet 36:721–750. doi: 10.1146/annurev.genet.36.050802.093940 PubMedCrossRefGoogle Scholar
  65. Whitt SR, Buckler ES (2003) Using natural allelic diversity to evaluate gene function. Methods Mol Biol 236:123–139. doi: 10.1385/1-59259-413-1:123 PubMedGoogle Scholar
  66. Xie CX, Warburton M, Li MS, Li XH, Xiao MJ, Hao ZF, Zhao Q, Zhang SH (2008) An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol Breed 21:407–418. doi: 10.1007/s11032-007-9140-8 CrossRefGoogle Scholar
  67. Yan W, Rajcan I (2002) Biplot analysis of test sites and trait relations of soybean in Ontario. Crop Sci 42:11–20. doi: 10.2135/cropsci2002.1100
  68. Yan WG, Li Y, Agrama HA, Luo D, Gao F, Lu X, Ren G (2009) Association mapping of stigma and spikelet characteristics in rice (Oryza sativa L.). Mol Breed 24:277–292. doi: 10.1007/s11032-009-9290-y Google Scholar
  69. Yao J, Wang L, Liu L, Zhao C, Zheng Y (2009) Association mapping of agronomic traits on chromosome 2A of wheat. Genetica 137:67–75. doi: 10.1007/s10709-009-9351-5 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Miroslav Zorić
    • 1
    Email author
  • Dejan Dodig
    • 2
    • 3
  • Borislav Kobiljski
    • 1
  • Steve Quarrie
    • 3
  • Jeremy Barnes
    • 3
  1. 1.Institute of Field and Vegetative CropsNovi SadSerbia
  2. 2.Maize Research InstituteBelgrade-Zemun PoljeSerbia
  3. 3.School of Biology, Newcastle Institute for Research on SustainabilityNewcastle UniversityNewcastle Upon TyneUK

Personalised recommendations