Advertisement

Genetica

, Volume 140, Issue 4–6, pp 235–247 | Cite as

Genetic analysis of Cydia pomonella (Lepidoptera: Tortricidae) populations with different levels of sensitivity towards the Cydia pomonella granulovirus (CpGV)

  • Nadine A. Gund
  • Annette Wagner
  • Alicia E. Timm
  • Stefanie Schulze-Bopp
  • Johannes A. Jehle
  • Jes Johannesen
  • Annette ReinekeEmail author
Article

Abstract

Microsatellite (simple sequence repeats, SSR) and mitochondrial DNA markers were used to assess the structure of European codling moth populations showing different levels of susceptibility towards one of the most important biocontrol agents used in apple production, the Cydia pomonella granulovirus CpGV-M. In 638 C. pomonella individuals from 33 different populations a total of 92 different alleles were scored using six SSR loci. The global estimate of genetic differentiation for all 33 populations was not significantly different from zero, thus indicating a lack of genetic differentiation. AMOVA analysis revealed a very weak but significant variance among C. pomonella populations from different geographic regions, however, no significant variation was evident between CpGV-M resistant or susceptible C. pomonella populations. Sequence analysis of a fragment of the cytochrome oxidase subunit 1 in eight C. pomonella populations resulted in 27 haplotypes, which were grouped in two distinct clusters. Again, no genetic differentiation between CpGV-M resistant and susceptible codling moth populations was detectable. In addition, Structure analysis using microsatellites and association tests with mtDNA haplotypes found neither population-level nor individual correlations associated with CpGV-M resistance. Accordingly, this lack of population structure does not allow discriminating between one or several, separate origins of CpGV-M resistance.

Keywords

Cydia pomonella Codling moth Baculovirus CpGV Microsatellites mtDNA Population genetics 

Notes

Acknowledgments

We thank Dustin Kulanek (Geisenheim) for help during SSR marker analysis and Eva Fritsch, Kathrin Undorf-Spahn (JKI Darmstadt) and Jutta Kienzle (Kernen) for providing codling moth samples. This work was supported by a grant of the Federal Organic Farming Scheme (05OE023/1) by the Federal Agency for Agriculture and Food (BLE) of Germany to the groups in Geisenheim, Neustadt and Darmstadt and by a grant of the “Stiftung Rheinland-Pfalz für Innovation” (grant 0861) to Jes Johannesen.

Supplementary material

10709_2012_9675_MOESM1_ESM.doc (352 kb)
Supplementary material 1 (DOC 352 kb)

References

  1. Asser-Kaiser S, Fritsch E, Undorf-Spahn K, Kienzle J, Eberle KE, Gund NA, Reineke A, Zebitz CPW, Heckel DG, Huber J, Jehle JA (2007) Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance. Science 317:1916–1918CrossRefPubMedGoogle Scholar
  2. Asser-Kaiser S, Heckel DG, Jehle JA (2010) Sex linkage of CpGV resistance in a heterogeneous field strain of the codling moth Cydia pomonella (L.). J Invertebr Pathol 103:59–64CrossRefPubMedGoogle Scholar
  3. Bale JS, van Lenteren JC, Bigler F (2008) Biological control and sustainable food production. Philos T R Soc B 363:761–776CrossRefGoogle Scholar
  4. Barnes MM (1991) Codling moth occurence, host race formation, and damage. In: Van der Geest LPS, Evenhuis HH (eds) Tortricid pests. Their biology, natural enemies and control. Elsevier, Amsterdam, pp 313–328Google Scholar
  5. Basoalto E, Miranda M, Knight AL, Fuentes-Contreras E (2010) Landscape analysis of adult codling moth (Lepidoptera: Tortricidae) distribution and dispersal within typical agroecosystems dominated by apple production in central Chile. Environ Entomol 39:1399–1408. doi: 10.1603/en09371 CrossRefPubMedGoogle Scholar
  6. Berling M, Blachere-Lopez C, Soubabere O, Lery X, Bonhomme A, Sauphanor B, Lopez-Ferber M (2009a) Cydia pomonella granulovirus genotypes overcome virus resistance in the codling moth and improve virus efficiency by selection against resistant hosts. Appl Environ Microb 75:925–930. doi: 10.1128/aem.01998-08 CrossRefGoogle Scholar
  7. Berling M, Rey J, Ondet S, Tallot Y, Soubabère O, Bonhomme A, Sauphanor B, Lopez-Ferber M (2009b) Field trials of CpGV virus isolates overcoming resistance to CpGV-M. Virol Sin 24:470–477CrossRefGoogle Scholar
  8. Buès R, Toubon JF (1992) Polymorphisme enzymatique dans différentes populations de Cydia pomonella L. (Lepidoptera: Toricidae). Acta Oecologie 13:583–591Google Scholar
  9. Chen MH, Dorn S (2010) Microsatellites reveal genetic differentiation among populations in an insect species with high genetic variability in dispersal, the codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Bull Ent Res 100:75–85. doi: 10.1017/s0007485309006786 CrossRefGoogle Scholar
  10. Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660CrossRefPubMedGoogle Scholar
  11. Cross JV, Solomon MG, Babendreier D, Blommers L, Easterbrook MA, Jay CN, Jenser G, Jolly RL, Kuhlmann U, Lilley R, Olivella E, Toepfer S, Vidal S (1999a) Biocontrol of pests of apples and pears in Northern and Central Europe: 2. Parasitoids. Biocontrol Sci Technol 9:277–314CrossRefGoogle Scholar
  12. Cross JV, Solomon MG, Chandler D, Jarrett P, Richardson PN, Winstanley D, Bathon H, Huber J, Keller B, Langenbruch GA, Zimmermann G (1999b) Biocontrol of pests of apples and pears in Northern and Central Europe: 1. Microbial agents and nematodes. Biocontrol Sci Technol 9:125–149CrossRefGoogle Scholar
  13. Denholm I, Devine GJ, Williamson MS (2002) Insecticide resistance on the move. Science 297:2222–2223CrossRefPubMedGoogle Scholar
  14. Eberle KE, Jehle JA (2006) Field resistance of codling moth against Cydia pomonella granulovirus (CpGV) is autosomal and incompletely dominant inherited. J Invertebr Pathol 93:201–206CrossRefPubMedGoogle Scholar
  15. Eberle KE, Asser-Kaiser S, Sayed SM, Nguyen HT, Jehle JA (2008) Overcoming the resistance of codling moth against conventional Cydia pomonella granulovirus (CpGV-M) by a new isolate CpGV-I12. J Invertebr Pathol 98:293–298CrossRefPubMedGoogle Scholar
  16. Eberle KE, Sayed S, Rezapanah M, Shojai-Estabragh S, Jehle JA (2009) Diversity and evolution of the Cydia pomonella granulovirus. J Gen Virol 90:662–671. doi: 10.1099/vir.0.006999-0 CrossRefPubMedGoogle Scholar
  17. Endersby NM, Ridland PM, Hoffmann AA (2008) The effects of local selection versus dispersal on insecticide resistance patterns: longitudinal evidence from diamondback moth (Plutella xylostella (Lepidoptera : Plutellidae)) in Australia evolving resistance to pyrethroids. Bull Entomol Res 98:145–157. doi: 10.1017/s0007485307005494 CrossRefPubMedGoogle Scholar
  18. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567CrossRefPubMedGoogle Scholar
  19. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  20. Franck P, Timm AE (2010) Population genetic structure of Cydia pomonella: a review and case study comparing spatiotemporal variation. J Appl Entomol 134:191–200. doi: 10.1111/j.1439-0418.2009.01426.x CrossRefGoogle Scholar
  21. Franck P, Guerin B, Loiseau A, Sauphanor B (2005) Isolation and characterization of microsatellite loci in the codling moth Cydia pomonella L. (Lepidoptera, Tortricidae). Mol Ecol Notes 5:99–102CrossRefGoogle Scholar
  22. Franck P, Reyes M, Olivares J, Sauphanor B (2007) Genetic architecture in codling moth populations: comparison between microsatellite and insecticide resistance markers. Mol Ecol 16:3554–3564. doi: 10.1111/j.1365-294X.2007.03410.x CrossRefPubMedGoogle Scholar
  23. Franck P, Ricci B, Klein EK, Olivares J, Simon S, Cornuet JM, Lavigne C (2011) Genetic inferences about the population dynamics of codling moth females at a local scale. Genetica 139:949–960CrossRefPubMedGoogle Scholar
  24. Fritsch E, Undorf-Spahn K, Kienzle J, Zebitz CPW, Huber J (2005) Apfelwickler Granulovirus: Erste Hinweise auf Unterschiede in der Empfindlichkeit lokaler Apfelwickler-Populationen. Nachrbl Dtsch Pflanzenschutzd 57:29–34Google Scholar
  25. Fuentes-Contreras E, Espinoza JL, Lavandero B, Ramirez CC (2008) Population genetic structure of codling moth (Lepidoptera: Tortricidae) from apple orchards in central Chile. J Econ Entomol 101:190–198. doi: 10.1603/0022-0493(2008)101[190:pgsocm]2.0.co;2 CrossRefPubMedGoogle Scholar
  26. Hedin MC, Maddison WP (2001) A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Mol Phylogenet Evol 18:386–403CrossRefPubMedGoogle Scholar
  27. Jehle JA, Eberle KE, Asser-Kaiser S, Schulze-Bopp S, Schmitt A (2010) Resistance of codling moth against Cydia pomonella granulovirus (CpGV): state of knowledge. In: FÖKO (ed) 14th international conference on organic fruit-growing, Hohenheim, Germany, 22.–24. pp 133–136Google Scholar
  28. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service, v. 3.23. BMC Genet 6:13CrossRefPubMedGoogle Scholar
  29. Labbe P, Lenormand T, Raymond M (2005) On the worldwide spread of an insecticide resistance gene: a role for local selection. J Evolution Biol 18:1471–1484. doi: 10.1111/j.1420-9101.2005.00938.x CrossRefGoogle Scholar
  30. Lacey LA, Thomson D, Vincent C, Arthurs SP (2008) Codling moth granulovirus: a comprehensive review. Biocontrol Sci Technol 18:639–663. doi: 10.1080/09583150802267046 CrossRefGoogle Scholar
  31. Meraner A, Brandstätter A, Thaler R, Aray B, Unterlechner M, Niederstätter H, Parson W, Zelger R, Dalla Via J, Dallinger R (2008) Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: I. Ancient clade splitting revealed by mitochondrial haplotype markers. Mol Phylogenet Evol 48:825–837CrossRefPubMedGoogle Scholar
  32. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245PubMedGoogle Scholar
  33. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  34. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  35. Reineke A, Karlovsky P, Zebitz CPW (1998) Preparation and purification of DNA from insects for AFLP-analysis. Insect Mol Biol 7:95–99CrossRefPubMedGoogle Scholar
  36. Reyes M, Franck P, Charmillot P-J, Ioriatti C, Olivares J, Pasqualini E, Sauphanor B (2007) Diversity of insecticide resistance mechanisms and spectrum in European populations of the codling moth, Cydia pomonella. Pest Manag Sci 63:890–902CrossRefPubMedGoogle Scholar
  37. Rezapanah M, Shojai-Estabragh S, Huber J, Jehle JA (2008) Molecular and biological characterization of new isolates of Cydia pomonella granulovirus from Iran. J Pest Sci 81:187–191. doi: 10.1007/s10340-008-0204-2 CrossRefGoogle Scholar
  38. Sauphanor B, Berling M, Toubon J-F, Reyes M, Delnatte J (2006) Carpocapse des pommes. Cas de résistance aux virus de la granulose dans le Sud-Est. Phytoma—La Défense des Végétaux 590:24–27Google Scholar
  39. Schulze-Bopp S, Jehle JA (2012) Development of a direct test of baculovirus resistance in wild codling moth populations. J Appl Entomol (in press: no–no). doi: 10.1111/j.1439-0418.2012.01733.x
  40. Schumacher P, Weber DC, Hagger C, Dorn S (1997a) Heritability of flight distance for Cydia pomonella. Ent Exp Appl 85:169–175. doi: 10.1046/j.1570-7458.1997.00247.x CrossRefGoogle Scholar
  41. Schumacher P, Weyeneth A, Weber DC, Dorn S (1997b) Long flights in Cydia pomonella L (Lepidoptera: Tortricidae) measured by a flight mill: influence of sex, mated status and age. Physiol Entomol 22:149–160. doi: 10.1111/j.1365-3032.1997.tb01152.x CrossRefGoogle Scholar
  42. Scott KD, Lawrence N, Lange CL, Scott LJ, Wilkinson KS, Merritt MA, Miles M, Murray D, Graham GC (2005) Assessing moth migration and population structuring in Helicoverpa armigera (Lepidoptera : Noctuidae) at the regional scale: example from the Darling Downs, Australia. J Econ Entomol 98:2210–2219CrossRefPubMedGoogle Scholar
  43. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compliation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701Google Scholar
  44. Tanada Y (1964) A granulovirus of the codling moth Carpocapsa pomonella (L.) (Lepidoptera: Olethreutidae). J Insect Pathol 6:378–380Google Scholar
  45. Thaler R, Brandstätter A, Meraner A, Chabicovski M, Parson W, Zelger R, Dalla Via J, Dallinger R (2008) Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: II. AFLP analysis reflects human-aided local adaptation of a global pest species. Mol Phylogenet Evol 48:838–849CrossRefPubMedGoogle Scholar
  46. Timm AE, Geertsema H, Warnich L (2006) Gene flow among Cydia pomonella (Lepidoptera : Tortricidae) geographic and host populations in South Africa. J Econ Entomol 99:341–348CrossRefPubMedGoogle Scholar
  47. Voudouris CC, Franck P, Olivares J, Sauphanor B, Mamuris Z, Tsitsipis JA, Margaritopoulos JT (2012) Comparing the genetic structure of codling moth Cydia pomonella (L.) from Greece and France: long distance gene-flow in a sedentary pest species. Bull Ent Res 102:185–198. doi: 10.1017/S0007485311000563 CrossRefGoogle Scholar
  48. Zehnder G, Gurr GM, Kuhne S, Wade MR, Wratten SD, Wyss E (2007) Arthropod pest management in organic crops. Ann Rev Entomol 52:57–80. doi: 10.1146/annurev.ento.52.110405.091337 CrossRefGoogle Scholar
  49. Zingg D (2008) Madex Plus and Madex I12 overcome virus resistance of codling moth. Paper presented at the 13th international conference on cultivation technique and phytopathological problems in organic fruit-growing, Weinsberg, Germany, 18.–20 February 2008Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Nadine A. Gund
    • 1
  • Annette Wagner
    • 2
  • Alicia E. Timm
    • 1
  • Stefanie Schulze-Bopp
    • 3
  • Johannes A. Jehle
    • 3
    • 4
  • Jes Johannesen
    • 2
  • Annette Reineke
    • 1
    Email author
  1. 1.Department of PhytomedicineGeisenheim Research CenterGeisenheimGermany
  2. 2.Department of Ecology, Zoological InstituteUniversity of MainzMainzGermany
  3. 3.Laboratory of Biotechnological Crop Protection, Department of PhytopathologyAgricultural Service Center Palatinate (DLR Rheinpfalz)Neustadt an der WeinstrasseGermany
  4. 4.Institute for Biological ControlFederal Research Centre for Cultivated Plants (Julius Kühn-Institut)DarmstadtGermany

Personalised recommendations