Advertisement

Genetica

, Volume 140, Issue 4–6, pp 229–233 | Cite as

Genetic linkage between melanism and winglessness in the ladybird beetle Adalia bipunctata

  • Suzanne T. E. LommenEmail author
  • Peter W. de Jong
  • Kees G. Koops
  • Paul M. Brakefield
Article

Abstract

We report a case of genetic linkage between the two major loci underlying different wing traits in the two-spot ladybird beetle, Adalia bipunctata (L.) (Coleoptera: Coccinellidae): melanism and winglessness. The loci are estimated to be 38.8 cM apart on one of the nine autosomes. This linkage is likely to facilitate the unravelling of the genetics of these traits. These traits are of interest in the context of the evolution of intraspecific morphological diversity, and for the application of ladybird beetles in biological control programs.

Keywords

Adalia bipunctata Classical genetics Linkage disequilibrium Wing morphology 

Notes

Acknowledgments

We thank Koppert B. V. for Ephestia eggs to feed the ladybirds with, and Fons Debets for discussing the results. This research was supported by the Technology Foundation STW, applied science division of NWO and the technology program of the Dutch Ministry of Economic Affairs.

References

  1. Bengtson SA, Hagen R (1977) Melanism in 2-spot ladybird Adalia bipunctata in relation to climate in Western Norway. Oikos 28(1):16–19. doi: 10.2307/3543317 CrossRefGoogle Scholar
  2. Brakefield PM (1984a) Ecological studies on the polymorphic ladybird Adalia bipunctata in The Netherlands. 1. Population biology and geographical variation of melanism. J Anim Ecol 53(3):761–774. doi: 10.2307/4658 CrossRefGoogle Scholar
  3. Brakefield PM (1984b) Selection along clines in the ladybird Adalia bipunctata in The Netherlands—a general mating advantage to melanics and its consequences. Heredity 53:37–49CrossRefGoogle Scholar
  4. Brakefield PM (1985) Polymorphic Mullerian mimicry and interactions with thermal melanism in ladybirds and a soldier beetle—a hypothesis. Biol J Linn Soc 26(3):243–267. doi: 10.1111/j.1095-8312.1985.tb01635.x CrossRefGoogle Scholar
  5. Brakefield PM, de Jong PW (2011) A steep cline in ladybird melanism has decayed over 25 years: a genetic response to climate change? Heredity 107(6):574–578. doi: 10.1038/hdy.2011.49 PubMedCrossRefGoogle Scholar
  6. Brakefield PM, Willmer PG (1985) The basis of thermal melanism in the ladybird Adalia bipunctata—differences in reflectance and thermal properties between the morphs. Heredity 54:9–14. doi: 10.1038/hdy.1985.3 CrossRefGoogle Scholar
  7. Creed ER (1975) Melanism in 2 spot ladybird—nature and intensity of selection. Proc R Soc Lond B Biol Sci 190(1098):135–148. doi: 10.1098/rspb.1975.0083 CrossRefGoogle Scholar
  8. De Jong PW, Gussekloo SWS, Brakefield PM (1996) Differences in thermal balance, body temperature and activity between non-melanic and melanic two-spot ladybird beetles (Adalia bipunctata) under controlled conditions. J Exp Biol 199(12):2655–2666PubMedGoogle Scholar
  9. De Jong PW, Brakefield PM, Geerinck BP (1998) The effect of female mating history on sperm precedence in the two-spot ladybird, Adalia bipunctata (Coleoptera, Coccinellidae). Behav Ecol 9(6):559–565CrossRefGoogle Scholar
  10. Dobzhansky T (1924) Die geographische und individuelle Variabilitat von Harmonia axyridis Pall in ihren Wechselbeziehungen. Biologisches Zentralblatt 44:401–421Google Scholar
  11. Dobzhansky T (1933) Geographical variation in lady-beetles. Am Nat 67:97–126CrossRefGoogle Scholar
  12. Haldane JBS (1919) The combination of linkage values, and the calculation of distances between the loci of linked factors. J Genet 8:299–309CrossRefGoogle Scholar
  13. Hammond PM (1985) Dimorphism of wings, wing-folding and wing-toiletry devices in the ladybird, Rhyzobius litura (F) (Coleoptera, Coccinellidae), with a discussion of inter-population variation in this and other wing-dimorphic beetle species. Biol J Linn Soc 24(1):15–33CrossRefGoogle Scholar
  14. Kuwayama H, Yaginuma T, Yamashita O, Niimi T (2006) Germ-line transformation and RNAi of the ladybird beetle, Harmonia axyridis. Insect Mol Biol 15(4):507–512. doi: 10.1111/j.1365-2583.2006.00665.x PubMedCrossRefGoogle Scholar
  15. Lommen STE, De Jong PW, Brakefield PM (2005) Phenotypic plasticity of elytron length in wingless two-spot ladybird beetles, Adalia bipunctata (Coleoptera : Coceinellidae). Eur J Entomol 102(3):553–556Google Scholar
  16. Lommen STE, Middendorp CW, Luijten CA, Van Schelt J, Brakefield PM, De Jong PW (2008) Natural flightless morphs of the ladybird beetle Adalia bipunctata improve biological control of aphids on single plants. Biol Control 47(3):340–346. doi: 10.1016/j.biocontrol.2008.09.002 Google Scholar
  17. Lommen STE, Saenko SV, Tomoyasu Y, Brakefield PM (2009) Development of a wingless morph in the ladybird beetle, Adalia bipunctata. Evol Dev 11(3):278–289. doi: 10.1111/j.1525-142X.2009.00330.x PubMedCrossRefGoogle Scholar
  18. Lommen STE, Holness TC, Van Kuik AJ, De Jong PW, Brakefield PM (2012) Releases of a natural flightless strain of the ladybird beetle Adalia bipunctata reduce aphid-born honeydew beneath urban lime trees. Biocontrol. doi: 10.1007/s10526-012-9478-7
  19. Lusis JJ (1961) On the biological meaning of colour polymorphism of lady-beetle Adalia bipunctata L. Latvijas Entomologs 4:3–29Google Scholar
  20. Majerus MEN (1994) Ladybirds, vol 81. New Naturalist, CollinsGoogle Scholar
  21. Majerus MEN (1998) Melanism: evolution in action. Oxford University Press, OxfordGoogle Scholar
  22. Majerus MEN, Zakharov IA (2000) Does thermal melanism maintain melanic polymorphism in the two-spot ladybird Adalia bipunctata (Coleoptera: Coccinellidae)? Zh Obshch Biol 61(4):381–392PubMedGoogle Scholar
  23. Majerus MEN, Odonald P, Kearns PWE, Ireland H (1986) Genetics and evolution of female choice. Nature 321(6066):164–167CrossRefGoogle Scholar
  24. Marples NM, De Jong PW, Ottenheim MM, Verhoog MD, Brakefield PM (1993) The inheritance of a wingless character in the 2-spot ladybird (Adalia bipunctata). Entomol Exp Appl 69(1):69–73CrossRefGoogle Scholar
  25. Michie LJ, Mallard F, Majerus MEN, Jiggins FM (2010) Melanic through nature or nurture: genetic polymorphism and phenotypic plasticity in Harmonia axyridis. J Evol Biol 23(8):1699–1707. doi: 10.1111/j.1420-9101.2010.02043.x PubMedCrossRefGoogle Scholar
  26. Michie LJ, Masson A, Ware RL, Jiggins FM (2011) Seasonal phenotypic plasticity: wild ladybirds are darker at cold temperatures. Evol Ecol 25(6):1259–1268. doi: 10.1007/s10682-011-9476-8 CrossRefGoogle Scholar
  27. Obrycki JJ, Harwood JD, Kring TJ, O’Neil RJ (2009) Aphidophagy by Coccinellidae: application of biological control in agroecosystems. Biol Control 51(2):244–254. doi: 10.1016/j.biocontrol.2009.05.009 CrossRefGoogle Scholar
  28. Pope RD (1977) Brachyptery and wing polymorphism among Coccinellidae (Coleoptera). Syst Entomol 2(1):59–66. doi: 10.1111/j.1365-3113.1977.tb00361.x CrossRefGoogle Scholar
  29. Smith SG (1953) Chromosome numbers of Coleoptera. Heredity 7(1):31–48. doi: 10.1038/hdy.1953.3 CrossRefGoogle Scholar
  30. Timofeeff-Ressovsky NW (1940) Zur Analyse des Polymorphismus bei Adalia bipunctata L. Biologisches Zentralblatt 60:130–137Google Scholar
  31. True JR (2003) Insect melanism: the molecules matter. Trends Ecol Evol 18(12):640–647. doi: 10.1016/j.tree.2003.09.006 CrossRefGoogle Scholar
  32. Ueno H, de Jong PW, Brakefield PM (2004) Genetic basis and fitness consequences of winglessness in the two-spot ladybird beetle, Adalia bipunctata. Heredity 93(3):283–289PubMedCrossRefGoogle Scholar
  33. Van ‘t Hof AE, Edmonds N, Dalikova M, Marec F, Saccheri IJ (2011) Industrial melanism in British peppered moths has a singular and recent mutational origin. Science 332(6032):958–960. doi: 10.1126/science.1203043 CrossRefGoogle Scholar
  34. Van’t Hof AE, Saccheri IJ (2010) Industrial melanism in the peppered moth is not associated with genetic variation in canonical melanisation gene candidates. Plos One 5(5):e10889. doi: 10.1371/journal.pone.0010889
  35. Wittkopp PJ, Beldade P (2009) Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. Semin Cell Dev Biol 20(1):65–71. doi: 10.1016/j.semcdb.2008.10.002 PubMedCrossRefGoogle Scholar
  36. Wittkopp PJ, Carroll SB, Kopp A (2003) Evolution in black and white: genetic control of pigment patterns in Drosophila. Trends Genet 19(9):495–504. doi: 10.1016/s0168-9525(03)00194-x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Suzanne T. E. Lommen
    • 1
    Email author
  • Peter W. de Jong
    • 2
  • Kees G. Koops
    • 1
  • Paul M. Brakefield
    • 1
    • 3
  1. 1.Institute of BiologyLeiden UniversityLeidenThe Netherlands
  2. 2.Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
  3. 3.Department of Zoology, University Museum of Zoology CambridgeUniversity of CambridgeCambridgeUK

Personalised recommendations