, Volume 140, Issue 4–6, pp 169–180 | Cite as

Sex chromosomes and associated rDNA form a heterochromatic network in the polytene nuclei of Bactrocera oleae (Diptera: Tephritidae)

  • Elena Drosopoulou
  • Ifigeneia Nakou
  • Jindra Šíchová
  • Svatava Kubíčková
  • František Marec
  • Penelope Mavragani-TsipidouEmail author


The olive fruit fly, Bactrocera oleae, has a diploid set of 2n = 12 chromosomes including a pair of sex chromosomes, XX in females and XY in males, but polytene nuclei show only five polytene chromosomes, obviously formed by five autosome pairs. Here we examined the fate of the sex chromosomes in the polytene complements of this species using fluorescence in situ hybridization (FISH) with the X and Y chromosome-derived probes, prepared by laser microdissection of the respective chromosomes from mitotic metaphases. Specificity of the probes was verified by FISH in preparations of mitotic chromosomes. In polytene nuclei, both probes hybridized strongly to a granular heterochromatic network, indicating thus underreplication of the sex chromosomes. The X chromosome probe (in both female and male nuclei) highlighted most of the granular mass, whereas the Y chromosome probe (in male nuclei) identified a small compact body of this heterochromatic network. Additional hybridization signals of the X probe were observed in the centromeric region of polytene chromosome II and in the telomeres of six polytene arms. We also examined distribution of the major ribosomal DNA (rDNA) using FISH with an 18S rDNA probe in both mitotic and polytene chromosome complements of B. oleae. In mitotic metaphases, the probe hybridized exclusively to the sex chromosomes. The probe signals localized a discrete rDNA site at the end of the short arm of the X chromosome, whereas they appeared dispersed over the entire dot-like Y chromosome. In polytene nuclei, the rDNA was found associated with the heterochromatic network representing the sex chromosomes. Only in nuclei with preserved nucleolar structure, the probe signals were scattered in the restricted area of the nucleolus. Thus, our study clearly shows that the granular heterochromatic network of polytene nuclei in B. oleae is formed by the underreplicated sex chromosomes and associated rDNA.


Chromosome painting FISH Laser microdissection Sex chromosomes Polytene chromosomes Ribosomal DNA 



This work was supported by Institutional funds of the Aristotle University of Thessaloniki and grant IAA600960925 of the Grant Agency of the Academy of Sciences of the Czech Republic, Prague. S. K. acknowledges support from Ministry of Agriculture of the Czech Republic (project MZE 0002716202). J.Š. received additional support from the grant GAJU 137/2010/P of the Grant Agency of the University of South Bohemia, České Budějovice, Czech Republic.

Supplementary material

10709_2012_9668_MOESM1_ESM.pdf (30 kb)
Supplementary material 1 (PDF 30 kb)
10709_2012_9668_MOESM2_ESM.pdf (345 kb)
Supplementary material 2 (PDF 345 kb)
10709_2012_9668_MOESM3_ESM.pdf (141 kb)
Supplementary material 3 (PDF 141 kb)


  1. Augustinos AA, Mamuris Z, Stratikopoulos EE, D’Amelio S, Zacharopoulou A, Mathiopoulos KD (2005) Microsatellite analysis of olive fruit fly populations in the Mediterranean indicates a westward expansion of the species. Genetica 125:231–241PubMedCrossRefGoogle Scholar
  2. Augustinos AA, Stratikopoulos EE, Drosopoulou E, Kakani EG, Mavragani-Tsipidou P, Zacharopoulou A, Mathiopoulos KD (2008) Isolation and characterization of microsatellite markers from the olive fly, Bactrocera oleae, and their cross-species amplification in the Tephritidae family. BMC Genomics 9:618PubMedCrossRefGoogle Scholar
  3. Baimai V, Trinachartvanit W, Tigvattananont S, Grote PJ, Poramarcom R, Kijchalao U (1995) Metaphase karyotypes of fruit flies of Thailand. I. Five sibling species of the Bactrocera dorsalis complex (Diptera: Tephritidae). Genome 38:1015–1022PubMedCrossRefGoogle Scholar
  4. Baimai V, Phinchongsakuldit J, Sumrandee C (2000) Cytological evidence for a complex of species within the taxon Bactrocera tau (Diptera: Tephritidae) in Thailand. Biol J Linn Soc 69:399–409CrossRefGoogle Scholar
  5. Basso A, Manso F (1998) Are Anastrepha fraterculus chromosomal polymorphisms an isolation barrier? Cytobios 93:103–111Google Scholar
  6. Bedo DG (1982) Differential sex chromosome replication and dosage compensation in polytene trichogen cells of Lucilia cuprina (Diptera: Calliphoridae). Chromosoma 87:21–32PubMedCrossRefGoogle Scholar
  7. Bedo DG (1986) Polytene and mitotic chromosome analysis in Ceratitis capitata (Diptera; Tephritidae). Can J Genet Cytol 28:180–188Google Scholar
  8. Bedo DG (1987) Polytene chromosome mapping in Ceratitis capitata (Diptera: Tephritidae). Genome 29:598–611CrossRefGoogle Scholar
  9. Bedo DG, Webb GC (1989) Conservation of nucleolar structure in polytene tissues of Ceratitis capitata (Diptera: Tephritidae). Chromosoma 98:443–449CrossRefGoogle Scholar
  10. Bedo DG, Zacharopoulou A (1988) Intertissue variability of polytene chromosome banding patterns. Trends Genet 4:90–91PubMedCrossRefGoogle Scholar
  11. Belyaeva ES, Andreyeva EN, Belyakin SN, Volkova EI, Zhimulev IF (2008) Intercalary heterochromatin in polytene chromosomes of Drosophila melanogaster. Chromosoma 117:411–418PubMedCrossRefGoogle Scholar
  12. Bressa MJ, Papeschi AG, Vítková M, Kubíčková S, Fuková I, Pigozzi MI, Marec F (2009) Sex chromosome evolution in cotton stainers of the genus Dysdercus (Heteroptera: Pyrrhocoridae). Cytogenet Genome Res 125:292–305PubMedCrossRefGoogle Scholar
  13. Brianti MT, Ananina G, Recco-Pimentel SM, Klaczko LB (2009) Comparative analysis of the chromosomal positions of rDNA genes in species of the tripunctata radiation of Drosophila. Cytogenet Genome Res 125:149–157PubMedCrossRefGoogle Scholar
  14. Cevallos VE, Nation JL (2004) Chromosomes of the Caribbean fruit fly (Diptera: Tephritidae). Fla Entomol 87:361–364CrossRefGoogle Scholar
  15. Childress D (1969) Polytene chromosomes and linkage group-chromosome correlations in the Australian sheep blowfly Lucilia cuprina (Diptera: Calliphoridae). Chromosoma 26:208–214PubMedCrossRefGoogle Scholar
  16. Dimitri P, Caizzi R, Giordano E, Accardo MC, Lattanzi G, Biamonti G (2009) Constitutive heterochromatin: a surprising variety of expressed sequences. Chromosoma 118:419–435PubMedCrossRefGoogle Scholar
  17. Drosopoulou E, Chrysopoulou A, Nikita V, Mavragani-Tsipidou P (2009) The heat shock 70 genes of the olive pest Bactrocera oleae: genomic organization and molecular characterization of a transcription unit and its proximal promoter region. Genome 52:210–214PubMedCrossRefGoogle Scholar
  18. Drosopoulou E, Koeppler K, Kounatidis I, Nakou I, Papadopoulos NT, Bourtzis K, Mavragani-Tsipidou P (2010) Genetic and cytogenetic analysis of the walnut-husk fly (Diptera: Tephritidae). Ann Entomol Soc Am 103:1003–1011CrossRefGoogle Scholar
  19. Drosopoulou E, Nestel D, Nakou I, Kounatidis I, Papadopoulos NT, Bourtzis K, Mavragani-Tsipidou P (2011) Cytogenetic analysis of the Ethiopian fruit fly Dacus ciliatus (Diptera: Tephritidae). Genetica 139:723–732PubMedCrossRefGoogle Scholar
  20. Fajkus J, Sýkorová E, Leitch A (2005) Telomeres in evolution and evolution of telomeres. Chromosome Res 13:469–479PubMedCrossRefGoogle Scholar
  21. Foster GG, Whitten MJ, Konovalov C, Bedo DG, Maddern RH, Boon DT (1980) Cytogenetic studies of Lucilia cuprina dorsalis R.-D. (Diptera: Calliphoridae). Polytene chromosome maps of the autosomes and cytogenetic localization of visible genetic markers. Chromosoma 81:151–168CrossRefGoogle Scholar
  22. Frias D (2002) Importance of larval morphology and heterochromatic variation in the identification and evolution of sibling species in the genus Rhagoletis (Diptera: Tephritidae) in Chile. In: Barnes BN (ed) Proceedings, 6th international symposium on fruit flies of economic importance, 6–10 May 2002, Stellenbosch. Isteg Scientific Publications, Irene, pp 267–276Google Scholar
  23. Frizzi G, Springhetti A (1953) Prime ricerche citogenetiche sul “Dacus oleae Gmel”. Ric Sci 23:1613–1620Google Scholar
  24. Frydrychová R, Marec F (2002) Repeated losses of TTAGG telomere repeats in evolution of beetles (Coleoptera). Genetica 115:179–187PubMedCrossRefGoogle Scholar
  25. Fuková I, Nguyen P, Marec F (2005) Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome 48:1083–1092PubMedCrossRefGoogle Scholar
  26. Gabrieli P, Gomulski LM, Bonomi A, Siciliano P, Scolari F, Franz G, Jessup A, Malacrida AR, Gasperi G (2011) Interchromosomal duplications on the Bactrocera oleae Y chromosome imply a distinct evolutionary origin of the sex chromosomes compared to Drosophila. PLoS One 6:e17747PubMedCrossRefGoogle Scholar
  27. Garcia-Martinez V, Hernandez-Ortiz E, Zepeta-Cisneros CS, Robinson AS, Zacharopoulou A, Franz G (2009) Mitotic and polytene chromosome analysis in the Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae). Genome 52:20–30PubMedCrossRefGoogle Scholar
  28. Goday C, Selivon D, Perondini ALP, Greciano PG, Ruiz MF (2006) Cytological characterization of sex chromosomes and ribosomal DNA location in Anastrepha species (Diptera, Tephritidae). Cytogenet Genome Res 114:70–76PubMedCrossRefGoogle Scholar
  29. Goulielmos GN, Cosmidis N, Loukas M, Tsakas S, Zouros E (2001) Characterization of two alcohol dehydrogenase (Adh) loci from the olive fruit fly, Bactrocera (Dacus) oleae and implications for Adh duplication in dipteran insects. J Mol Evol 52:29–39PubMedGoogle Scholar
  30. Goulielmos GN, Cosmidis N, Theodorakopoulou ME, Loukas M, Zouros E (2003) Tracing the history of an enzyme polymorphism: the case of alcohol dehydrogenase-2 (Adh-2) of the olive fruit fly Bactrocera oleae. Mol Biol Evol 20:293–306PubMedCrossRefGoogle Scholar
  31. Goulielmos GN, Cosmidis N, Eliopoulos E, Loukas M, Zouros E (2006) Cloning and structural characterization of the 6-phosphogluconate dehydrogenase locus of the medfly Ceratitis capitata and the olive fruit fly Bactrocera oleae. Biochem Biophys Res Commun 341:721–727PubMedCrossRefGoogle Scholar
  32. Halanych KM, Bacheller JD, Aguinaldo AM, Liva SM, Hillis DM, Lake JA (2005) Evidence from 18S ribosomal DNA that the lophophorates are protostome animals. Science 267:1641–1643CrossRefGoogle Scholar
  33. Hunwattanakul N, Baimai V (1994) Mitotic karyotype of four species of fruit flies (Bactrocera) in Thailand. Kasetsart J Nat Sci 28:142–148Google Scholar
  34. Jain D, Cooper JP (2010) Telomeric strategies: means to an end. Annu Rev Genet 44:243–269PubMedCrossRefGoogle Scholar
  35. Kaufmann BP (1939) Distribution of induced breaks along the X-chromosome of Drosophila melanogaster. Proc Natl Acad Sci USA 25:571–577PubMedCrossRefGoogle Scholar
  36. Kounatidis I, Papadopoulos N, Bourtzis K, Mavragani-Tsipidou P (2008) Genetic and cytogenetic analysis of the fruit fly Rhagoletis cerasi (Diptera: Tephritidae). Genome 51:479–491PubMedCrossRefGoogle Scholar
  37. Krimbas CB (1963) A contribution to the cytogenetics of Dacus oleae (Gmel) (Diptera: Trypetidae): the salivary gland and the mitotic chromosomes. Caryologia 16:371–376Google Scholar
  38. Kubickova S, Cernohorska H, Musilova P, Rubes J (2002) The use of laser microdissection for the preparation of chromosome-specific painting probes in farm animals. Chromosome Res 10:571–577PubMedCrossRefGoogle Scholar
  39. Lagos D, Ruiz MF, Sánchez L, Komitopoulou K (2005) Isolation and characterization of the Bactrocera oleae genes orthologous to the sex determining sex-lethal and doublesex genes of Drosophila melanogaster. Gene 348:111–121PubMedCrossRefGoogle Scholar
  40. Lagos D, Koukidou M, Savakis C, Komitopoulou K (2007) The transformer gene in Bactrocera oleae: the genetic switch that determines its sex fate. Insect Mol Biol 16:221–230PubMedCrossRefGoogle Scholar
  41. Loreto V, Cabrero J, Lopez-Leon MD, Camacho JPM, de Souza MJ (2008) Comparative analysis of rDNA location in 5 Neotropical gomphocerine grasshopper species. Genetica 132:95–101PubMedCrossRefGoogle Scholar
  42. Madalena CR, Amabis JM, Stocker AJ, Gorab E (2007) The localization of ribosomal DNA in Sciaridae (Diptera: Nematocera) reassessed. Chromosome Res 15:409–416PubMedCrossRefGoogle Scholar
  43. Marchi A, Pili E (1994) Ribosomal RNA genes in mosquitoes: localization by fluorescence in situ hybridization (FISH). Heredity 72:599–605PubMedCrossRefGoogle Scholar
  44. Mason JM, Reddy HM, Capkova Frydrychova R (2011) Telomere maintenance in organisms without telomerase. In: Seligmann H (ed) DNA replication—current advances. InTech, Rijeka, pp 323–346Google Scholar
  45. Mavragani-Tsipidou P (2002) Genetic and cytogenetic analysis of Bactrocera oleae (Dacus oleae) (Diptera: Tephritidae). Genetica 116:45–57PubMedCrossRefGoogle Scholar
  46. Mavragani-Tsipidou P, Karamanlidou G, Zacharopoulou A, Koliais S, Kastritsis CD (1992) Mitotic and polytene chromosome analysis in Dacus oleae (Diptera: Tephritidae). Genome 35:373–378PubMedCrossRefGoogle Scholar
  47. Montiel Bueno A, Jones O (2002) Alternative methods for controlling the olive fly, Bactrocera oleae, involving semiochemicals. International organization for biological and integrated control of noxious animals and plants west palaearctic regional section (IOBC/WPRS). Bulletin 25:1–11Google Scholar
  48. Nardi F, Carapelli A, Dallai R, Frati F (2003) The mitochondrial genome of the olive fly Bactrocera oleae: two haplotypes from distant geographical locations. Insect Mol Biol 12:605–611PubMedCrossRefGoogle Scholar
  49. Nardi F, Carapelli A, Dallai R, Roderick GK, Frati F (2005) Population structure and colonization history of the olive fly, Bactrocera oleae (Diptera, Tephritidae). Mol Ecol 14:2729–2738PubMedCrossRefGoogle Scholar
  50. Procunier WS, Smith JJ (1993) Localization of ribosomal DNA in Rhagoletis pomonella (Diptera: Tephritidae) by in situ hybridization. Insect Mol Biol 2:163–174PubMedCrossRefGoogle Scholar
  51. Rafael MS, Tadei WP, Recco-Pimentel SM (2003) Location of ribosomal genes in the chromosomes of Anopheles darlingi and Anopheles nuneztovari (Diptera, Culicidae) from the Brazilian Amazon. Mem Inst Oswaldo Cruz 98:629–635PubMedCrossRefGoogle Scholar
  52. Rafael MS, Santos IP Jr, Tadei WP, Carvalho KA, Recco-Pimente SM, Sallum MA, Forattini OP (2006) Cytogenetic study of Anopheles albitarsis (Diptera: Culicidae) by C-banding and in situ hybridization. Hereditas 143:62–67PubMedCrossRefGoogle Scholar
  53. Rosetto M, de Filippis T, Mandrioli M, Zacharopoulou A, Gourzi P, Manetti AGO, Marchini D, Dallai R (2000) Ceratotoxins, female-specific X-linked genes from the medfly Ceratitis capitata. Genome 43:707–711PubMedGoogle Scholar
  54. Roy V, Monti-Dedieu L, Chaminade N, Siljak-Yakovlev S, Aulard S, Lemeunier F, Montchamp-Moreau C (2005) Evolution of the chromosomal location of rDNA genes in two Drosophila species subgroups: ananassae and melanogaster. Heredity 94:388–395PubMedCrossRefGoogle Scholar
  55. Schwarzacher HG, Wachtler F (1993) The nucleolus. Anat Embryol 188:515–536PubMedCrossRefGoogle Scholar
  56. Scouras ZG, Kastritsis CD (1985) Torus shaped bands at the 2R telomere region and at the region 68 of the salivary gland chromosomes of Drosophila auraria. Experientia 41:1467–1468CrossRefGoogle Scholar
  57. Selivon D, Perondini ALP, Rocha LS (2005) Systematics, morphology and physiology—Karyotype characterization of Anastrepha fruit flies (Diptera: Tephritidae). Neotrop Entomol 34:273–279CrossRefGoogle Scholar
  58. Semeshin VF, Kritikou D, Zacharopoulou A, Zhimulev IF (1995) Electron microscopy investigation of polytene chromosomes in the Mediterranean fruit fly Ceratitis capitata. Genome 38:652–660PubMedCrossRefGoogle Scholar
  59. Shahjahan RM, Yesmin F (2002) Polytene chromosome maps of the melon fly Bactrocera curcubitae (Diptera, Tephritidae). Genome 45:1167–1174PubMedCrossRefGoogle Scholar
  60. Singh OP, Gupta JP (1984) Studies on mitotic and salivary chromosomes of Dacus curcubitae Coquilett (Diptera, Tephritidae). Genetica 62:217–221CrossRefGoogle Scholar
  61. Stage DE, Eickbush TH (2007) Sequence variation within the rRNA gene loci of 12 Drosophila species. Genome Res 17:1888–1897PubMedCrossRefGoogle Scholar
  62. Stratikopoulos EE, Augustinos AA, Pavlopoulos I, Economou KPh, Mintzas A, Mathiopoulos KD, Zacharopoulou A (2009) Isolation and characterization of microsatellite markers from the Mediterranean fruit fly, Ceratitis capitata: cross-species amplification in other Tephritidae species reveals a varying degree of motif conservation. Mol Genet Genomics 282:283–306PubMedCrossRefGoogle Scholar
  63. Stuart W, Bishop JG, Carson HL, Frank MB (1981) Location of the 18/28S ribosomal RNA genes in two Hawaiian Drosophila species by monoclonal immunological identification of RNA∙DNA hybrids in situ. Proc Natl Acad Sci USA 78:3751–3754PubMedCrossRefGoogle Scholar
  64. Traut W, Sahara K, Otto TD, Marec F (1999) Molecular differentiation of sex chromosomes probed by comparative genomic hybridization. Chromosoma 108:173–180PubMedCrossRefGoogle Scholar
  65. Traut W, Szczepanowski M, Vítková M, Opitz C, Marec F, Zrzavý J (2007) The telomere repeat motif of basal Metazoa. Chromosome Res 15:371–382PubMedGoogle Scholar
  66. Tsitsipis JA (1977) An improved method for the mass rearing of the olive fruit fly, Dacus oleae (Gmel.) (Diptera, Tephritidae). Z Agrew Entomol 83:419–426CrossRefGoogle Scholar
  67. Tsoumani KT, Augustinos AA, Kakani EG, Drosopoulou E, Mavragani-Tsipidou P, Mathiopoulos KD (2011) Isolation, annotation and applications of expressed sequence tags from the olive fly, Bactrocera oleae. Mol Genet Genomics 285:33–45PubMedCrossRefGoogle Scholar
  68. Tzanakakis ME, Economopoulos AP (1967) Two efficient larval diets for continuous rearing of the olive fruit fly. J Econ Entomol 60:660–663Google Scholar
  69. Wachtler F, Stahl A (1993) The nucleolus: a structural and functional interpretation. Micron 24:473–505CrossRefGoogle Scholar
  70. White IM, Elson-Harris MM (eds) (1992) Fruit flies of economic significance: their identification and bionomics. CAB International, WallingfordGoogle Scholar
  71. Whiting MF (2002) Phylogeny of the holometabolous insect orders: molecular evidence. Zool Scr 31:3–15CrossRefGoogle Scholar
  72. Willhoeft U (1997) Fluorescence in situ hybridization of ribosomal DNA to mitotic chromosomes of tsetse flies (Diptera: Glossinidae: Glossina). Chromosome Res 5:262–267PubMedCrossRefGoogle Scholar
  73. Willhoeft U, Franz G (1996) Comparison of the mitotic karyotypes of Ceratitis capitata, Ceratitis rosa, and Trirhithrum coffeae (Diptera: Tephritidae) by C-banding and FISH. Genome 39:884–889PubMedCrossRefGoogle Scholar
  74. Zacharopoulou A (1987) Cytogenetic analysis of mitotic and salivary gland chromosomes in the medfly Ceratitis capitata. Genome 29:67–71CrossRefGoogle Scholar
  75. Zacharopoulou A (1990) Polytene chromosome maps in the medfly Ceratitis capitata. Genome 33:184–197Google Scholar
  76. Zacharopoulou A, Augustinos AA, Sayed WA, Robinson AS, Franz G (2011) Mitotic and polytene chromosomes analysis of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Genetica 139:79–90PubMedCrossRefGoogle Scholar
  77. Zambetaki A, Kleanthous K, Mavragani-Tsipidou P (1995) Cytogenetic analysis of Malpighian tubule and salivary gland polytene chromosomes of Bactrocera oleae (Dacus oleae) (Diptera: Tephritidae). Genome 38:1070–1081PubMedCrossRefGoogle Scholar
  78. Zambetaki A, Zacharopoulou A, Scouras ZG, Mavragani-Tsipidou P (1999) The genome of the olive fruit Bactrocera oleae: localization of molecular markers by in situ hybridization to salivary gland polytene chromosomes. Genome 42:744–751Google Scholar
  79. Zhao JT, Frommer M, Sved JA, Zacharopoulou A (1998) Mitotic and polytene analyses in the Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). Genome 41:510–526PubMedGoogle Scholar
  80. Zhimulev IF, Semeshin VF, Kulichkov VA, Belyaeva ES (1982) Intercalary heterochromatin in Drosophila. I. Localization and general characteristics. Chromosoma 87:197–228CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Elena Drosopoulou
    • 1
  • Ifigeneia Nakou
    • 1
  • Jindra Šíchová
    • 2
    • 3
  • Svatava Kubíčková
    • 4
  • František Marec
    • 2
    • 3
  • Penelope Mavragani-Tsipidou
    • 1
    Email author
  1. 1.Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of SciencesAristotle University of Thessaloniki (AUTH)ThessalonikiGreece
  2. 2.Laboratory of Molecular Cytogenetics, Institute of EntomologyBiology Centre ASCRČeské BudějoviceCzech Republic
  3. 3.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  4. 4.Veterinary Research InstituteBrnoCzech Republic

Personalised recommendations