Advertisement

Genetica

, Volume 140, Issue 4–6, pp 149–158 | Cite as

Cytogenetics of Synbranchiformes: a comparative analysis of two Synbranchus Bloch, 1795 species from the Amazon

  • N. D. M. Carvalho
  • M. C. Gross
  • C. H. Schneider
  • M. L. Terencio
  • J. Zuanon
  • E. Feldberg
Article

Abstract

Synbranchidae belongs to the Synbranchiformes and occurs in Africa, Asia, Australia, Mexico, and Central and South America. This family comprises four genera: Synbranchus, Ophisternon, Monopterus, and Macrotrema. Only two are known from the neotropical region, Ophisternon and Synbranchus. According to current classification, Synbranchus has three valid species: S. marmoratus (Bloch 1795), S. madeirae (Rosen and Rumney 1972), and S. lampreia (Favorito, Zanata and Assumpção 2005). Thus the present research is aimed to cytogenetically characterize (by classical and molecular methods) two syntopic species—S. aff. lampreia and S. madeirae—from the central Amazon basin to validate the taxonomy of both species and provide a revisionary discussion on the cytogenetics of Synbranchiformes. Synbranchus aff. lampreia was found to possess 2n = 44 chromosomes (6 m + 2st + 36a, NF = 50), while S. madeirae had 2n = 46 chromosomes (6 m + 2st + 38a, NF = 52). Constitutive heterochromatin was dominant in the centromeric and terminal regions of most of the chromosomes in both species, although the precise distribution patterns were species-specific. The nucleolar organizing region was single in S. aff. lampreia and multiple in S. madeirae, as indicated by both AgNO3 and hybridization using 18S rDNA probes. The 5S rDNA sites were located interstitially on the long arms of an acrocentric pair in both species, and the telomeric probe did not show any interstitial sites in either species. These data indicate the occurrence of interspecific karyotypic variability in Synbranchus and suggest that taxonomic review for this genus is necessary.

Keywords

Muçum Karyotype Fluorescent in situ hybridization rDNA Chromosomal rearrangement 

Notes

Acknowledgments

This work was supported by the Instituto Nacional de Pesquisas da Amazônia (INPA) through the Research Institutional Projects, the graduate program of INPA Genética, Conservação e Biologia Evolutiva, PIPT/FAPEAM (grant number: 1749/08). Collecting was performed with a permit issued by the Brazilian Institute of the Environment and Renewable Natural Resources (IBAMA n. 10609-1/2007). NDMC was granted by Fundação de Amparo a Pesquisas do Estado do Amazonas FAPEAM. EF (process # 307536/2008-4) and JZ (process # 307464/2009-1) receive productivity grants from CNPq. This paper was reviewed by American Journal Experts.

References

  1. Antoneli FN (2006) Perfil morfo-funcional da inversão do sexo em Synbranchidae (Teleostei: Synbranchiformes). Ph. D Thesis, Universidade de São PauloGoogle Scholar
  2. Arkhipchuk VV (1999) Database of fish chromosomes. http://www.fishbase.org
  3. Beisel C, Paro R (2011) Silencing chromatin: comparing modes and mechanisms. Nat Rev 12:123–135. doi: 10.1038/nrg2932 Google Scholar
  4. Bertollo LAC, Takahashi CS, Moreira-Filho O (1978) Cytotaxonomic considerations on Hoplias lacerdae (Pisces, Erytrinidae). Braz J Gen 7:103–120Google Scholar
  5. Bühler M (2009) RNA turnover and chromatin-dependent gene silencing. Chromosoma 118:141–151. doi: 10.1007/s00412-008-0195-z CrossRefPubMedGoogle Scholar
  6. DeBaryshe PG, Pardue ML (2011) Differential maintenance of DNA sequences in telomeric and centromeric heterochromatin. Genetics 187:51–60. doi: 10.1534/genetics.110.122994 CrossRefPubMedGoogle Scholar
  7. Favorito SE, Zanata AM, Assumpção MI (2005) A new Synbranchus (Teleostei: Synbranchiformes: Synbranchidae) from ilha Marajó, Pará, Brazil, with notes on its reproductive biology and larval development. Neot Ichth 3:319–328. doi: 10.1590/S1679-62252005000300001 Google Scholar
  8. Favorito-Amorim SA (1998) Relações filogenéticas da ordem Synbranchiformes e revisão sistemática da família Synbranchidae. Ph. D Thesis, Universidade de São PauloGoogle Scholar
  9. Favorito-Amorin SE (1992) Revisão sistemática das espécies brasileiras do gênero Synbranchus (Teleostei, Acanthopterygii). MSc Dissertation, Universidade de São PauloGoogle Scholar
  10. Foresti F, Oliveira C, Tien OS (1992) Cytogenetic studies in fishes of the genus Synbranchus (Pisces, Synbranchiformes, Synbranchidae). Naturalia 17:129–138Google Scholar
  11. Galetti PM Jr, Aguilar CT, Molina WF (2000) An overview of marine fish cytogenetics. Hydrobiologia 420:55–62. doi: 10.1023/A:1003977418900 CrossRefGoogle Scholar
  12. Grewal SIS, Jia S (2007) Heterochromatin revisited. Nat Rev 8:35–46. doi: 10.1038/nrg2008 CrossRefGoogle Scholar
  13. Gross MC, Schneider CH, Valente GT, Martins C, Feldberg E (2010) Variability of 18S rDNA locus among Symphysodon fishes: chromosomal rearrangements. J Fish Biol 76:1117–1127. doi: 10.1111/j.1095-8649.2010.02550.x CrossRefPubMedGoogle Scholar
  14. Howell WM, Black DA (1980) Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia 3:1014–1015. doi: 10.1007/BF01953855 CrossRefGoogle Scholar
  15. IJdo JW, Wells RA, Baldini A, Reeders ST (1991) Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res 19(17):4780CrossRefPubMedGoogle Scholar
  16. Ji FY, Yu QX, Li K, Ren XH (2003) Ag-staining pattern, FISH and ISH with rDNA probes in the rice field eel (Monopterus albus Zuiew) chromosomes. Hereditas 138:207–212. doi: 10.1034/j.1601-5223.2003.01643.x CrossRefPubMedGoogle Scholar
  17. Khuda-Bukhsh AR, Barat A (1987) Chromosomes in fifteen species of Indian teleosts (Pisces). Caryologia 40:131–144Google Scholar
  18. Komiya H, Takemura S (1979) Nucleotide sequence of 5S ribosomal RNA from rainbow trout (Salmo gairdnerii) liver. J Bioch 86:1067–1080Google Scholar
  19. Kullander SO (2003) Family Synbranchidae. In: Reis RR, Kullander SO, Ferraris CJ (eds) Check list of the freshwater of South and Central America. Editora da Universidade Católica, Porto Alegre, BrasilGoogle Scholar
  20. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220CrossRefGoogle Scholar
  21. Liu JD, Yi MS, Zhao G, Zhou F, Wang DQ, Yu QX (2002) Sex chromosomes in the spiny eel (Mastacembelus aculeatus) revealed by mitotic and meiotic analysis. Cyt Gen Res 98:291–297. doi: 10.1159/000071051 CrossRefGoogle Scholar
  22. Lo Nostro F, Guerrero G (1996) Presence of primary and secondary males in a population of Synbranchus marmoratus, Bloch 1795, a protogynous fish (Teleostei, Synbranchiformes). J Fish Biol 49:788–800. doi: 10.1111/j.1095-8649.1996.tb00079.x Google Scholar
  23. Lo Nostro F, Grier H, Andreone L, Guerrero GA (2003) Involvement of the gonadal germinal epithelium during sex reversal and seasonal testicular cycling in the protogynous swamp eel, Synbranchus marmoratus Bloch 1795 (Teleostei, Synbranchidae). J Morph 257:107–126. doi: 10.1002/jmor.10105 CrossRefPubMedGoogle Scholar
  24. Mandrioli M, Cuoghi BC, Marini M, Manicardi GC (1999) Localization of the (TTAGGG)n telomeric repeat in the chromosomes of the pufferfish Tetraodon fluviatilis (Hamilton Buchanan) (Osteichthyes). Caryologia 52(3–4):155–157Google Scholar
  25. Manna GK, Prasad R (1977) Chromosome analysis of five species of freshwater fishes. Nucleus 20:264–271Google Scholar
  26. Martins C (2007) Chromosomes and repetitive DNAs: a contribution to the knowledge of fish genome. In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG (eds) Fish cytogenetics. Science Publisher, Inc., Enfield, pp 421–453Google Scholar
  27. Martins C, Galetti PM Jr (1999) Chromosomal localization of 5S rDNA genes Schizodon (Pisces, Anostomidae) chromosomes. Chrom Res 8(4):353–355. doi: 10.1023/A:1009216030316 CrossRefGoogle Scholar
  28. Martins C, Galetti PM Jr (2001) Two 5S rDNA arrays in neotropical fish species: is it a general rule for fishes? Genetica 111:439–446. doi: 10.1023/A:1013799516717 CrossRefPubMedGoogle Scholar
  29. Martins C, Wasko AP (2004) Organization and evolution of 5S ribosomal DNA in the fish genome. In: Williams CR (ed) Focus on genome research. Nova Science Publishers, Hauppauge, pp 335–363Google Scholar
  30. Melillo MIFM, Foresti F, Oliveira C (1996) Additional cytogenetic studies on local populations of Synbranchus marmoratus (Pisces, Synbranchiformes, Synbranchidae). Naturalia 21:201–208Google Scholar
  31. Nelson JS (2006) Fishes of the world. Wiley, New YorkGoogle Scholar
  32. Ohno S (1974) Protochordata, Cyclostomata and Pisces. In: John B (ed) Animal cytogenetics, Gebr¸der Borntraeger, p 92Google Scholar
  33. Oliveira C, Almeida-Toledo LF, Foresti F, Toledo-Filho SA (1988) Supernumerary chromosomes, Robertsonian rearrangement and multiple NORs in Corydoras aeneus (Pisces, Siluriformes, Callichthyidae). Caryologia 41:227–236Google Scholar
  34. Oliveira C, Torres RA, Favorito S, Foresti F (1997) Cytogenetic studies of Mastacembelus armatus (Pisces, Mastacembelidae). Cytobios 92:83–89Google Scholar
  35. Pinkel D, Straume T, Gray JW (1986) Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Nat Acad Sci 83:2934–2938CrossRefPubMedGoogle Scholar
  36. Ridley M (2006) Evolução. Editora Artmed, Porto Alegre, BrasilGoogle Scholar
  37. Rosen DE, Greenwood PH (1976) A fourth Neotropical species of synbranchid eel and the phylogeny and systematics of Synbranchiform. Ann Wien von Mus Naturg 157:1–70Google Scholar
  38. Rosen DE, Rumney A (1972) Evidence of a second species of Synbranchus (Pisces, Teleostei) in South America. Am Mus 2497:1–45Google Scholar
  39. Ruiz-Carus R (2002) Chromosome analysis of the sexual phases of the protogynous hermaphrodites Epinephelus guttatus and Thalassoma bifasciatum (Serranidae and Labridae; Teleostei). Carib J Sci 38:44–51Google Scholar
  40. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, pp 633–664Google Scholar
  41. Sanchez S, Fenocchio AS (1996) Karyotypic analysis in three populations of the South-American eel like fish Synbranchus marmoratus. Caryologia 49:65–71Google Scholar
  42. Schofield P, Nico LG (2009) Salinity of non-native Asian swamp eels (Teleostei; Synbranchidae) in Florida, USA: comparison of three populations and implications for dispersal. Environ Biol Fish 85:51–59. doi: 10.1007/s10641-009-9456-9 CrossRefGoogle Scholar
  43. Sumner AT (1972) A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res 75:304–306. doi: 10.1016/0014-4827(72)90558-7 CrossRefPubMedGoogle Scholar
  44. Torres RA, Roper JJ, Foresti F, Oliveira C (2005) Surprising genomic diversity in the Neotropical fish Synbranchus marmoratus (Teleostei, Synbranchidae): how many species? Neot Ichth 3:277–284. doi: 10.1590/S1679-62252005000200005 Google Scholar
  45. Tyler JC, Feller I (1996) Caribbean marine occurrence in the mangroves of a typically fresh water synbranchiform fish. Gulf Mex Sci 1:26–30Google Scholar
  46. Yajuan L, Qixing Y (1991) Electron microscopic observation of synaptonemal complexes in spermatocytes of six species of fishes. Chin J Gen 18:273–282Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • N. D. M. Carvalho
    • 1
  • M. C. Gross
    • 2
  • C. H. Schneider
    • 1
  • M. L. Terencio
    • 1
  • J. Zuanon
    • 3
  • E. Feldberg
    • 1
  1. 1.Laboratório de Genética AnimalInstituto Nacional de Pesquisas da AmazôniaManausBrazil
  2. 2.Laboratório de Citogenômica Animal, Instituto de Ciências BiológicasUniversidade Federal do AmazonasManausBrazil
  3. 3.Laboratório de Sistemática e Ecologia de PeixesInstituto Nacional de Pesquisas da AmazôniaManausBrazil

Personalised recommendations