Advertisement

Genetica

, Volume 140, Issue 4–6, pp 125–136 | Cite as

Diversity of tuco-tucos (Ctenomys, Rodentia) in the Northeastern wetlands from Argentina: mitochondrial phylogeny and chromosomal evolution

  • Diego A. Caraballo
  • Giselle A. Abruzzese
  • María Susana RossiEmail author
Article

Abstract

Tuco-tucos (small subterranean rodents of the genus Ctenomys) that inhabit sandy soils of the area under the influence of the second largest wetland of South America, in Northeastern Argentina (Corrientes province), are a complex of species and forms whose taxonomic status were not defined, nor are the evolutionary relationships among them. The tuco-tuco populations of this area exhibit one of the most ample grades of chromosomal variability within the genus. In order to analyze evolutionary relationships within the Corrientes group and its chromosomal variability, we completed the missing karyotypic information and performed a phylogenetic analysis. We obtained partial sequences of three mitochondrial markers: D-loop, cytochrome b and cytochrome oxidase I. The Corrientes group was monophyletic and split into three main clades that grouped related karyomorphs. The phylogeny suggested an ancestral condition of the karyomorph with diploid number (2n) 70 and fundamental number (FN) 84 that has evolved mainly via reductions of the FN although amplifications occurred in certain lineages. We discuss the relationship between patterns of chromosomal variability and species and groups boundaries. From the three main clades the one named iberá exhibited a remarkable karyotypic homogeneity, and could be considered as an independent and cohesive evolutionary lineage. On the contrary, the former recognized species C. dorbignyi is a polyphyletic lineage and hence its systematic classification should be reviewed.

Keywords

Ctenomys Mitochondrial phylogeny Chromosomal evolution Cytochrome b D-loop Cytochrome oxidase I 

Notes

Acknowledgments

This work was supported by grants from the Agencia Nacional de Investigaciones Científicas y Técnicas (PICT 3836/1) and Consejo Nacional de Investigaciones Científicas y Técnicas (PIP 5776) from Argentina. D.A.C. is supported by a doctoral fellowship awarded by CONICET. M. S. R. is career investigator of the CONICET. We would like to thank Diana Avedikian, Pablo Belluscio, Paola Jablonski and Pablo Rebagliati. We also would like to thank Rodrigo Álvarez, Thales R. de Freitas, María Jimena Gómez Fernández, Marcelo Kittlein, Fernando Mapelli, Patricia Mirol, Matías Mora, Vanina Raimondi, Verónica Trucco Cano, and Laura Wolfenson for assistance at the fieldwork. Finally we thank two anonymous reviewers whose comments have improved the manuscript.

References

  1. Argüelles CF, Suárez P, Giménez MD, Bidau CJ (2001) Intraspecific chromosome variation between different populations of Ctenomys dorbignyi (Rodentia, Ctenomyidae) from Argentina. Acta Theriol 46(4):363–373CrossRefGoogle Scholar
  2. Avise JC (2004) Molecular markers, natural history and evolution. Sinauer Associates, SunderlandGoogle Scholar
  3. Baker RJ, Bickham JW (1986) Speciation by monobrachial centric fusions. Proc Natl Acad Sci USA 83:8245–8248PubMedCrossRefGoogle Scholar
  4. Bohn VY, Campo AM (2010) Estimación de escurrimientos superficiales para cuencas no aforadas en Corrientes, Argentina. Investigaciones Geográficas 71:31–42Google Scholar
  5. Bryja J, Granjon L, Dobigny G et al (2010) Plio-Pleistocene history of West African Sudanian savanna and the phylogeography of the Praomys daltoni complex (Rodentia): the environment/geography/genetic interplay. Mol Ecol 19:4783–4799PubMedCrossRefGoogle Scholar
  6. Castillo AH, Cortinas MN, Lessa EP (2005) Rapid diversification of South American tuco-tucos (Ctenomys; Rodentia, Ctenomyidae): contrasting mitochondrial and nuclear intron sequences. J Mammal 86:170–179CrossRefGoogle Scholar
  7. Contreras JR (1989) Ctenomys roigi, una nueva especie de ‘anguya tutu’ de la Provincia de Corrientes, Argentina (Rodentia: Ctenomyidae). Bol Inst Estud Almerienses 1988 (extra)(1989): 51–67Google Scholar
  8. Contreras JR, Contreras ANCH (1984) Diagnosis preliminar de una nueva especie de ‘anguyá tutú’ (género Ctenomys) para la provincia de Corrientes, Argentina (Mammalia, Rodentia). Hist Nat 4:131–132Google Scholar
  9. Cook JA, Anderson S, Yates TL (1990) Notes on Bolivian mammals. 6, The genus Ctenomys (Rodentia, Ctenomyidae) in the highlands. Am Mus Novit 2980:1–27Google Scholar
  10. Cutrera AP, Antinuchi CD, Mora MS, Vassallo AI (2006) Home-range and activity patterns of the South American subterranean rodent Ctenomys talarum. J Mammal 87:1183–1191CrossRefGoogle Scholar
  11. Cutrera AP, Mora MS, Antenucci CD, Vassallo AI (2010) Intra- and interspecific variation in home-range size in sympatric tuco-tucos, Ctenomys australis and C. talarum. J Mammal 91:1425–1434CrossRefGoogle Scholar
  12. D’Elía G, Lessa EP, Cook JA (1999) Molecular phylogeny of tuco-tucos, genus Ctenomys (Rodentia: Octodontidae): evaluation of the mendocinus species group and the evolution of asymmetric sperm. J Mamm Evol 6:19–38CrossRefGoogle Scholar
  13. Fernández-Stolz GP, Stolz JFB, De Freitas TRO (2007) Bottlenecks and dispersal in the tuco-tuco das Dunas, Ctenomys flamarioni (Rodentia: Ctenomyidae), in Southern Brazil. J Mammal 88:935–945CrossRefGoogle Scholar
  14. Ford CE, Hamerton JL (1956) A colchicine, hypotonic citrate, squash sequence for mammalian chromosomes. Stain Technol 31:247–251PubMedGoogle Scholar
  15. Francescoli G (2010) Tuco-tucos’ vocalization output varies seasonally (Ctenomys pearsoni; Rodentia, Ctenomyidae): implications for reproductive signaling. Acta Ethol 14:1–6CrossRefGoogle Scholar
  16. Freitas TRO (1994) Geographical variation of heterochromatin in Ctenomys flamarioni (Rodentia-Octodontidae) and its cytogenetic relationships with other species of the genus. Cytogenet Cell Genet 67:193–198PubMedCrossRefGoogle Scholar
  17. Gallardo M (1979) Las especies Chilenas de Ctenomys (Rodentia, Octodontidae). I. Estabilidad Cariotípica. Archivos de Biología y Medicina experimental 12:71–82Google Scholar
  18. García L, Ponsa M, Egozcue J, García M (2000a) Comparative chromosomal analysis and phylogeny in four Ctenomys species (Rodentia, Octodontidae). Biol J Linn Soc 69:103–120CrossRefGoogle Scholar
  19. García L, Ponsa M, Egozcue J, García M (2000b) Cytogenetic variation in Ctenomys perrensi (Rodentia, Octodontidae). Biol J Linn Soc 71:615–624CrossRefGoogle Scholar
  20. Giménez MD, Mirol PM, Bidau CJ, Searle JB (2002) Molecular analysis of populations of Ctenomys (Caviomorpha, Rodentia) with high karyotypic variability. Cytogenet Genome Res 96:130–136PubMedCrossRefGoogle Scholar
  21. Godinho R, Crespo EG, Ferrand N (2008) The limits of mtDNA phylogeography: complex patterns of population history in a highly structured Iberian lizard are only revealed by the use of nuclear markers. Mol Ecol 17:4670–4683PubMedCrossRefGoogle Scholar
  22. Kiblisky P, Brum-Zorrilla N, Perez G, Saez F (1977) Variabilidad cromosómica entre diversas poblaciones uruguayas del roedor cavador del genero Ctenomys (Rodentia-Octodontidae). Mendeliana 2:85–93Google Scholar
  23. Lanzone C, Giménez MD, Santos JL, Bidau CJ (2007) Meiotic effects of Robertsonian translocations in tuco-tucos of the Ctenomys perrensi superspecies (Rodentia: Ctenomyidae). Caryologia 60:233–244Google Scholar
  24. Lara MC, Patton JL, Da Silva MNF (1996) The simultaneous diversification of South American echimyid rodents (Hystricognathi) based on complete cytochrome b sequences. Mol Phylogenet Evol 5:403–413PubMedCrossRefGoogle Scholar
  25. Larkin MA et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948PubMedCrossRefGoogle Scholar
  26. Larmuseau MHD, Raeymaekers JAM, Hellemans B et al (2010) Mito-nuclear discordance in the degree of population differentiation in a marine goby. Heredity 105:532–542PubMedCrossRefGoogle Scholar
  27. Lessa EP, Cook JA (1998) The molecular phylogenetics of tuco-tucos (genus Ctenomys, Rodentia: Octodontidae) suggests an early burst of speciation. Mol Phylogenet Evol 9:88–99PubMedCrossRefGoogle Scholar
  28. Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:1–22Google Scholar
  29. Mascheretti S, Mirol PM, Giménez MD, Bidau CJ, Contreras JR, Searle JB (2000) Phylogenetics of the speciose and chromosomally variable rodent genus Ctenomys (Ctenomyidae, Octodontoidea), based on mitochondrial cytochrome b sequences. Biol J Linn Soc 70:361–376CrossRefGoogle Scholar
  30. Massarini A, Freitas TRO (2005) Morphological and cytogenetics comparison in species of the mendocinus-group (genus Ctenomys) with emphasis in C. australis and C. flamarioni (Rodentia-Ctenomyidae). Caryologia 58:21–27Google Scholar
  31. Massarini A, Barros MA, Ortells MO, Reig OA (1991) Evolutionary biology of fossorial Ctenomyine rodents (Caviomorph: Octodontidae). I. Chromosomal polymorphism and small karyotypic differentiation in Central Argentinian populations of tuco-tucos. Genetica 83:131–144CrossRefGoogle Scholar
  32. Mirol PM, Mascheretti S, Searle JB (2000) Multiple nuclear pseudogenes of mitochondrial cytochrome b in Ctenomys (Caviomorpha, rodentia) with either great similarity to or high divergence from the true mitochondrial sequence. Heredity 84(Pt 5):538–547PubMedCrossRefGoogle Scholar
  33. Mirol P, Giménez MD, Searle JB, Bidau CJ, Faulkes CG (2010) Population and species boundaries in the South American subterranean rodent Ctenomys in a dynamic environment. Biol J Linn Soc 100:368–383CrossRefGoogle Scholar
  34. Mora MS, Mapelli FJ, Gaggiotti OE et al (2010) Dispersal and population structure at different spatial scales in the subterranean rodent Ctenomys australis. BMC Genet 11:9PubMedCrossRefGoogle Scholar
  35. Nyakaana S, Arctander P (1999) Population genetic structure of the African elephant in Uganda based on variation at mitochondrial and nuclear loci: evidence for male-biased gene flow. Mol Ecol 8:1105–1115PubMedCrossRefGoogle Scholar
  36. Ortells MO, Barrantes GE (1994) Genetic distances and variability study in several species of the genus Ctenomys (Rodentia: Octodontidae), with special reference to a probable causal role of chromosomes in speciation. Biol J Linn Soc 53:189–208Google Scholar
  37. Ortells MO, Contreras JR, Reig OA (1990) New Ctenomys karyotypes (Rodentia, Octodontidae) from north-eastern Argentina and from Paraguay confirm the extreme chromosomal multiformity of the genus. Genetica 82:189–201CrossRefGoogle Scholar
  38. Parada A, D’Elía G, Bidau CJ, Lessa EP (2011) Species groups and the evolutionary diversification of tuco-tucos, genus Ctenomys (Rodentia: Ctenomyidae). J Mammal 92:671–682CrossRefGoogle Scholar
  39. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14(9):817–818PubMedCrossRefGoogle Scholar
  40. Quintana CA (1994) Ctenominos primitivos (Rodentia, Octodontidae) del Mioceno de la Provincia de Buenos Aires, Argentina. Bol R Soc Esp Hist Nat (Sec Geol) 89:19–23Google Scholar
  41. Reig OA (1989) Karyotypic repatterning as one triggering factor in cases of explosive speciation. In: Fontdevila A (ed) Evolutionary biology of transient unstable populations. Springer, Berlin, pp 246–289CrossRefGoogle Scholar
  42. Reig OA, Kiblisky P (1969) Chromosome multiformity in the genus Ctenomys (Rodentia, Octodontidae), a progress report. Chromosoma 28:211–244PubMedCrossRefGoogle Scholar
  43. Reig OA, Quintana CA (1992) Fossil ctenomyine rodents of the genus Eucelophorus (Caviomorpha: Octodontidae) from the Pliocene and early Pleistocene of Argentina. Ameghiniana 29:363–380Google Scholar
  44. Reig OA, Busch C, Ortells MO, Contreras JR (1990) An overview of evolution, systematics, population biology, cytogenetics, molecular biology and speciation in Ctenomys. Prog Clin Biol Res 335:71–96PubMedGoogle Scholar
  45. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574PubMedCrossRefGoogle Scholar
  46. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  47. Slade RW, Moritz C, Heideman A (1994) Multiple nuclear-gene phylogenies: application to pinnipeds and comparison with a mitochondrial DNA gene phylogeny. Mol Biol Evol 11:341–356PubMedGoogle Scholar
  48. Slamovits CH (2002) Filogenia molecular y dinámica del ADN satélite: su relación con la evolución de los roedores tuco-tucos (Ctenomys, Octodontidae) PhD thesis. Universidad de Buenos Aires, Buenos Aires, ArgentinaGoogle Scholar
  49. Slamovits CH, Cook JA, Lessa EP, Rossi MS (2001) Recurrent amplifications and deletions of satellite DNA accompanied chromosomal diversification in South American tuco-tucos (genus Ctenomys, Rodentia: Octodontidae): a phylogenetic approach. Mol Biol Evol 18:1708–1719PubMedCrossRefGoogle Scholar
  50. Swofford DL (2003) PAUP: phylogenetic analysis using parsimony (and other methods), version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  51. Tomasco IH, Lessa EP (2007) Phylogeography of the tuco-tuco: mtDNA variation and its implication for chromosomal differentiation. In: Kelt DA, Lessa EP, Salazar-Bravo JA, Patton JL (eds) The quintessential naturalist: honoring the life and legacy of Oliver P. Pearson. University of California Publications in Zoology, San Diego, pp 859–882Google Scholar
  52. Verzi DH, Montalvo CI, Vucetich MG (1991) Nuevos restos de Xenodontomys simpsoni Kraglievich y la sistemática de los más antiguos Ctenomyinae (Rodentia, Octodontidae). Ameghiniana 28:325–331Google Scholar
  53. Woods C, Kilpatrick C (2005) Infraorder Hystricognathi Brandt, 1855. In: Wilson DE, Reeder DM (eds) Mammal species of the world: a taxonomic and geographic reference, 3rd edn. John Hopkins University Press, Baltimore, MD, pp 1538–1600Google Scholar
  54. Xia X, Xie Z (2001) DAMBE: data analysis in molecular biology and evolution. J Hered 92:371–373PubMedCrossRefGoogle Scholar
  55. Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26:1–7PubMedCrossRefGoogle Scholar
  56. Zenuto RR, Busch C (1998) Population biology of the subterranean rodent Ctenomys australis (tuco-tuco) in a coastal dune-field in Argentina. Zeitschrift für Säugetierkunde 63:357–367Google Scholar
  57. Zenuto RR, Lacey EA, Busch C (1999a) DNA fingerprinting reveals polygyny in the subterranean rodent Ctenomys talarum. Mol Ecol 8:1529–1532PubMedCrossRefGoogle Scholar
  58. Zenuto RR, Malizia AI, Busch C (1999b) Sexual size dimorphism, testes size and mating system in two populations of Ctenomys talarum (Rodentia: Octodontidae). J Nat History 33:305–314CrossRefGoogle Scholar
  59. Zenuto RR, Vasallo AI, Busch C (2002) Comportamiento social y reproductivo del roedor subterráneo solitario Ctenomys talarum (Rodentia: Ctenomyidae) en condiciones de semicautiverio. Rev Chil Hist Nat 75:165–177CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Diego A. Caraballo
    • 1
  • Giselle A. Abruzzese
    • 1
  • María Susana Rossi
    • 1
    Email author
  1. 1.IFIBYNE-CONICET. Laboratorio de Fisiología y Biología Molecular, Dep. Fisiología, Biología Molecular y CelularUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations