Skip to main content
Log in

Variability of individual genetic load: consequences for the detection of inbreeding depression

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Inbreeding depression is a key factor affecting the persistence of natural populations, particularly when they are fragmented. In species with mixed mating systems, inbreeding depression can be estimated at the population level by regressing the average progeny fitness by the selfing rate of their mothers. We applied this method using simulated populations to investigate how population genetic parameters can affect the detection power of inbreeding depression. We simulated individual selfing rates and genetic loads from which we computed fitness values. The regression method yielded high statistical power, inbreeding depression being detected as significant (5 % level) in 92 % of the simulations. High individual variation in selfing rate and high mean genetic load led to better detection of inbreeding depression while high among-individual variation in genetic load made it more difficult to detect inbreeding depression. For a constant sampling effort, increasing the number of progenies while decreasing the number of individuals per progeny enhanced the detection power of inbreeding depression. We discuss the implication of among-mother variability of genetic load and selfing rate on inbreeding depression studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Balloux F, Amos W, Coulson T (2004) Does heterozygosity estimate inbreeding in real populations. Mol Ecol 13:3021–3031

    Article  PubMed  CAS  Google Scholar 

  • Barett S, Charlesworth D (1991) Effects of a change in the level of inbreeding on the genetic load. Nature 352(6335):522–524

    Article  Google Scholar 

  • Bijlsma R, Bundgaard J, Boerema AC (2000) Does inbreeding depression affect the extinction risk of small populations ?: predictions from Drosophila. J Evol Biol 13:502–514

    Article  Google Scholar 

  • Britten HB (1996) Meta-analyses of the association between multilocus heterozygosity and fitness. Evolution 50(6):2158–2164

    Article  Google Scholar 

  • Brook BW, Tonkyn DW, O’Grady JJ, Frankham R (2002) Contribution of inbreeding to extinction risk in threatened species. Conserv Ecol 6(1):Article No 16

    Google Scholar 

  • Burczyk J, Kosiński G, Lewandowski A (1991) Mating pattern and empty seed formation in relation to crown level Larix decidua mill. clones. Silva fennica 25(4):201–205

    Google Scholar 

  • Charlesworth D, Charlesworth B (1987) Inbreeding depression and its evolutionary consequences. Annu Rev Ecol Syst 18:237–268

    Article  Google Scholar 

  • Cheptou PO, Mathias A (2001) Can varying inbreeding depression select for intermediary selfing rates. Am Nat 157(4):361–373

    Article  PubMed  CAS  Google Scholar 

  • Cheptou PO, Berger A, Blanchard A, Collin C, Escarre J (2000) The effect of drought stress on inbreeding depression in four populations of the mediterranean outcrossing plant Crepis sancta (asteraceae). Heredity 85:294–302

    Article  PubMed  Google Scholar 

  • Cheptou PO, Imbert E, Lepart J, Escarre J (2000) Effects of compettition on lifetime estimates of inbreeding depression in the outcrossing plant Crepis sancta (asteraceae). J Evol Biol 13:522–531

    Article  Google Scholar 

  • Culley TM, Weller SG, Sakai AK, Rankin AE (1999) Inbreeding depression and selfing rates in a self-compatible, hermaphroditic species, Schiedea membranacea (caryophyllaceae). Am J Bot 86(7):980–987

    Article  PubMed  CAS  Google Scholar 

  • Darwin CR (1876) The effects of cross and self-fertilisation in the vegetable kingdom. John Murray, London

    Google Scholar 

  • Dudash MR, Fenster CB (2001) The role of breeding system and inbreeding depression in the maintenance of an outcrossing mating strategy in Silene virginica (Caryophyllaceae. Am J Bot 88(11):1953–1959

    Article  PubMed  CAS  Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Eppley SM, Pannell JR (2007) Density-dependent self-fertilization and male versus hermaphrodite siring success in an androdioecious plant. Evolution 61(10):2349–2359

    Article  PubMed  Google Scholar 

  • Ferriol M, Pichot C, Lefèvre F (2011) Variation of selfing rate and inbreeding depression among individuals and across generations within an admixed Cedrus population. Heredity 106:146–157

    Article  PubMed  CAS  Google Scholar 

  • Glémin S (2003) How are deleterious mutations purged? Drift versus non-random mating. Evolution 57(12):2678–2687

    PubMed  Google Scholar 

  • Goodwillie C, Knight MC (2006) Inbreeding depression and mixed mating system in Leptosiphon jepsonii: a comparison of three populations. Ann Bot 98:351–360

    Article  PubMed  Google Scholar 

  • Goodwillie C, Kalisz S, Eckert CG (2005) The evolutionary enigma of mixed mating systems in plants: occurence, theoretical explanations, and empirical evidence. Annu Rev Ecol Evol Syst 36:47–79

    Article  Google Scholar 

  • Grueber CE, Wallis GP, Jamieson IG (2008) Heterozygosity-fitness correlations and their relevance to studies on inbreeding depression in the threatened species. Mol Ecol 17:3978–3984

    Article  PubMed  Google Scholar 

  • Grueber CE, Waters JM, Jamieson IG (2011) The imprecision of heterozygosity-fitness correlations hinders the detection of inbreeding and inbreeding depression in a threatened species. Mol Ecol 20:67–79

    Article  PubMed  Google Scholar 

  • Hedrick PW (2004) Recent developments in conservation genetics. For Ecol Manag 197:3–19

    Article  Google Scholar 

  • Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Annu Rev Ecol Syst 31:139–162

    Article  Google Scholar 

  • Hedrick PW, Savolainen O, Kärkkäinen K (1999) Factors influencing the extent of inbreeding depression: an example from scots pine. Heredity 82:441–450

    Article  PubMed  Google Scholar 

  • Husband BC, Schemske DW (1996) Evolution of the magnitude and timing of inbreeding depression in plants. Evolution 50(1):54–70

    Article  Google Scholar 

  • Jacquard A (1975) Inbreeding: oneword, severalmeanings. Theor Popul Biol 7:338–363

    Article  PubMed  CAS  Google Scholar 

  • Jain SK (1976) The evolution of inbreeding in plants. Annu Rev Ecol Syst 7:469–495

    Article  Google Scholar 

  • Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17(5):230–241

    Article  Google Scholar 

  • Keller LF, Grant PR, Grant BR, Petren K (2002) Environmental conditions affect the magnitude of inbreeding depression in survival of darwin’s finches. Evolution 56(6):1229–1239

    PubMed  Google Scholar 

  • Kormutak A, Lindgren D (1996) Mating system and empty seeds in silver fir (Abies alba mill.). For Genet 3(4):231–235

    Google Scholar 

  • Lande R, Schemske DW (1985) The evolution of self-fertilization and inbreeding depression in plants. i.genetic models. Evolution 39(1):24–40

    Article  Google Scholar 

  • Lascoux M, Lee JK (1998) One step beyond lethal equivalents: characterization of deleterious loci in the rapid cycling Brassica rapa l. population. Genetica 104:161–170

    Article  PubMed  CAS  Google Scholar 

  • Lindgren D (1975) The relationship between self-fertilization, empty seeds and seeds originating from selfing as a consequence of polyembryony. Studia Forestalia Suecica 126:1–24

    Google Scholar 

  • Lu Y (2000) Effects of density on mixed mating systems and reproduction in natural populations of Impatiens capensis. Int J Plant Sci 161(4):671–681

    Article  CAS  Google Scholar 

  • Luquet E, David P, Lena J, Joly P, Konecny L, Dufresnes C, Perrin N, Plenet S (2011) Heterozygosity-fitness correlations among wild populations of european tree frog (hyla arborea) detect fixation load. Mol Ecol 20:1877–1887

    Article  PubMed  CAS  Google Scholar 

  • Maki M (1993) Outcrossing and fecundity advantage of females in gynodioecious Chionographis japonica var. kurohimensis (Liliaceae). Am J Bot 80(6):629–634

    Article  Google Scholar 

  • Mimura M, Aitken SN (2007) Increased selfing and decreased effective pollen donor number in peripheral relative to central populations in Picea sitchensis (pinaceae). Am J Bot 94(6):991–998

    Article  PubMed  Google Scholar 

  • Morton NE, Crow JF, Muller HJ (1956) An estimate of the mutational damage in man from data on consanguineous marriages. Proc Nat Acad Sci 42:855–863

    Article  PubMed  CAS  Google Scholar 

  • Naito Y, Kanzaki M, Iwata H, Obayashi K, Lee SL, Muhammad N, Okuda T, Tsumura Y (2008) Density-dependent selfing and its effects on seed performance in a tropical canopy tree species, Shorea acuminata (dipterocarpaceae). For Ecol Manag 256(3):375–383. doi:10.1016/j.foreco.2008.04.031

    Article  Google Scholar 

  • Pemberton J (2004) Measuring inbreeding depression in the wild: the old ways are the best. Trends Ecol Evol 19(12):613–615

    Article  PubMed  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. URL http://www.R-project.org, ISBN 3-900051-07-0

  • Remington DL, O’Malley DM (2000) Whole-genome characterization of embryonic stage inbreeding depression in a selfed lobolly pine family. Genetics 155:337–348

    PubMed  CAS  Google Scholar 

  • Restoux G (2009) Variabilité spatio-temporelle de la reproduction chez une espèce pérenne monoïque : Le cas du sapin pectiné, abies alba miller, en limite sud de son aire de répartition. PhD thesis, Université Aix-Marseille III

  • Restoux G, Silva DE, Sagnard F, Torre F, Klein EK, Fady B (2008) Life at the margin: the mating system of mediterranean conifers. Web Ecol 8:94–102

    Google Scholar 

  • Ritland K (1990) Inferences about inbreeding depression based on changes of the inbreeding coefficient. Evolution 44(5):1230–1241

    Article  Google Scholar 

  • Robertson A, Hill WG (1984) Deviations from hardy-weinberg proportions: Sampling variances and use in estimation of inbreeding coefficients. Genetics 107:703–718

    PubMed  CAS  Google Scholar 

  • Schemske DW, Lande R (1985) The evolution of self-fertilization and inbreeding depression in plants. ii. empirical observations. Evolution 39(1):41–52

    Article  Google Scholar 

  • Slate J, David P, Dodds K, Veenvliet B, Glass B, Broad T, McEwan J (2004) Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255–265

    Article  PubMed  CAS  Google Scholar 

  • Sorensen F (1969) Embryonic genetic load in coastal douglas-fir, Pseudotsuga menziesii var. menziesii. Am Nat 103(932):389–398

    Article  Google Scholar 

  • Sorensen FC (1982) The roles of polyembryony and embryo viability in the genetic system of conifers. Evolution 36(4):725–733

    Article  Google Scholar 

  • Szulkin M, Bierne N, David P (2010) Heterozygosity-fitness correlations: a time for reappraisal. Evolution 64(5):1202–1217

    PubMed  Google Scholar 

  • Wang KS (2003) Relationship between empty seed and genetic factors in european beech (Fagus sylvatica L.). Silva Fennica 37(4):419–428

    CAS  Google Scholar 

  • Weir B, Cockerham C (1984) Estimating F-statistics for the analysis of population structure. Evolution 38(6):6

    Article  Google Scholar 

  • Weller SG, Sakai AK, Thai DA, Tom J, Rankin AE (2005) Inbreeding depression and heterosis in populations of Schiedea viscosa, a highly selfing species. J Evol Biol 18:1434–1444

    Article  PubMed  CAS  Google Scholar 

  • Williams C, Barnes R, Nyoka I (1999) Embryonic genetic load of a neotropical conifer, Pinus patula schiede and deppe. J Hered 90(3):394–398

    Article  Google Scholar 

  • Williams CG, Savolainen O (1996) Inbreeding depression in conifers: implications for breeding strategy. For Sci 42(1):102–117

    Google Scholar 

  • Winn AA, Elle E, Kalisz S, Cheptou PO, Eckert CG, Goodwillie C, Johnston MO, Moeller DA, Ree RH, Sargent RD, Vallejo-Marín M (2011) Analysis of inbreeding depression in mixed-mating plants provides evidence for selective interference and stable mixed mating. Evolution 65(12):3339–3359

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Financial support to Gwendal Restoux during his Ph.D. was provided by INRA-EFPA and The Provence Alpes Côtes dAzur Regional Government. The study was partially funded by the European Network of Excellence EVOLTREE. The authors are grateful to Jacqui Shykoff for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwendal Restoux.

Electronic supplementary material

Below is the link to the electronic supplementary material.

R (3 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Restoux, G., Huot de Longchamp, P., Fady, B. et al. Variability of individual genetic load: consequences for the detection of inbreeding depression. Genetica 140, 39–51 (2012). https://doi.org/10.1007/s10709-012-9656-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-012-9656-7

Keywords

Navigation