Genetica

, Volume 139, Issue 11–12, pp 1349–1365 | Cite as

Global and New Caledonian patterns of population genetic variation in the deep-sea splendid alfonsino, Beryx splendens, inferred from mtDNA

  • Lauriana Lévy-Hartmann
  • Valérie Roussel
  • Yves Letourneur
  • Daniel Y. Sellos
Article

Abstract

Splendid alfonsino Beryxsplendens is a commercial species in several countries, but is not currently exploited in New Caledonia. Information on species biology and genetics can influence the development of fisheries and assist in their management, but the genetic structuring and diversity of B. splendens populations remain largely unknown. To improve knowledge of genetic parameters, we used mitochondrial DNA sequences to conduct a comparative study of populations from throughout the world. Fragments of 815 bp of cytochrome b gene were sequenced and used to interpret the species history. We analyzed 204 individuals representing 14 geographical populations worldwide. A special focus was put on populations from New Caledonia. Analysis of variation between sequences, based on pairwise F statistics and AMOVA, demonstrated a population subdivision between the Atlantic and Indo-Pacific Oceans (Fst = 0.11–0.32; P < 0.05). Minimum-spanning network analysis revealed a mainly star-shaped pattern, with two lineages that may represent population expansion following a bottleneck/founder event and/or suggest colonization by migratory events over large distances. Our observations demonstrated that the species seems to follow the oceanic currents. Analysis of the nucleotide sequences revealed 122 variable sites, which defined numerous haplotypes, some associated with particular geographical regions. These data suggest an extremely high intra-specific genetic diversity, even at small scales. Focusing on the New Caledonia area, statistical analysis did not reveal sub-structuring among samples, suggesting again that at least a fraction of individuals migrate. No significant isolation by distance pattern was observed in this species (R = −0.22; P = 0.79) among seamount populations in the EEZ.

Keywords

Population genetics Deep-sea fish mtDNA Cytochrome b Genetic diversity Genetic structure Migration 

References

  1. Aboim MA (2005) Population genetics and evolutionary history of some deep-sea demersal fishes from the Azores—North Atlantic. PhD thesis University of Southampton, faculty of engineering science and mathematics, school of ocean and earth scienceGoogle Scholar
  2. Aboim MA, Menezes GM, Schlitt T, Rogers AD (2005) Genetic structure and history of populations of the deep-sea fish Helicolenus dactylopterus (Delaroche 1809) inferred from mtDNA sequence analysis. Mol Ecol 14:1343–1354PubMedCrossRefGoogle Scholar
  3. Adachi K, Takagi K, Tanaka E, Yamada S, Kitakado T (2000) Age and growth of alfonsino Beryx splendens in the waters around the Izu Islands. Fish Sci 66:232–240CrossRefGoogle Scholar
  4. Akimoto S, Kinoshita S, Sezaki K, Mitani I, Watabe S (2002) Identification of alfonsino and related fish species belonging to the genus Beryx with mitochondrial 16S rRNA gene and its application on their pelagic eggs. Fish Sci 68:1242–1249CrossRefGoogle Scholar
  5. Akimoto S, Itoi S, Sezaki K, Borsa P, Watabe S (2006) Identification of alfonsino, Beryx mollis and B. splendens collected in Japan, based on the mitochondrial cytochrome b gene, and their comparison with those collected in New Caledonia. Fish Sci 72:202–207CrossRefGoogle Scholar
  6. Anon (1995) Report of the on the biology and assessment of deep-sea fisheries resources. ICES CM 1995/Assess: 4Google Scholar
  7. Aubert H, Lightner DV (2000) Identification of genetic populations of the Pacific blue shrimp Penaeus stylirostris of the Gulf of California, Mexico. Mar Biol 137:875–885CrossRefGoogle Scholar
  8. Avise JC, Neigel JE, Arnold J (1984) Demographic influences on mitochondrial DNA lineage survivorship in animal populations. J Mol Evol 20:99–105PubMedCrossRefGoogle Scholar
  9. Baker AJ, Daugherty CH, Colbourne R, McLennan JL (1995) Flightless brown kiwis of New Zealand possess extremely subdivided population structure and cryptic species like small mammals. Proc Natl Acad Sci USA 92:8254–8258PubMedCrossRefGoogle Scholar
  10. Ball AO, Sedberry GR, Zatcoff MS, Chapman RW, Carlin JL (2000) Population structure of the wreckfish Polyprion americanus determined with microsatellite genetic markers. Mar Biol 137:1077–1090CrossRefGoogle Scholar
  11. Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedCrossRefGoogle Scholar
  12. Barber PH, Palumbi SR, Erdmann MV, Moosa MK (2002) Sharp genetic breaks among populations of Haptosquilla pulchella (Stomatopoda) indicate limits to larval transport: patterns, causes, and consequences. Mol Ecol 11(4):659–674PubMedCrossRefGoogle Scholar
  13. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568PubMedCrossRefGoogle Scholar
  14. Boehlert GW, Mundy BC (1993) Ichthyoplankton assemblages at Seamounts and Oceanic Islands. Bull Mar Sci 53(2):336–361Google Scholar
  15. Busakhin SV (1982) Systematics and distribution of the family Berycidae (Osteichthyes) in the World Ocean. J Ichthyol 22(6):1–21Google Scholar
  16. Cantatore P, Roberti M, Pesole G, Ludovico A, Milella F, Gadaleta MN, Saccone C (1994) Evolutionary analysis of cytochrome b sequences in some perciformes: evidence for a slower rate of evolution than in Mammals. J Mol Evol 39:589–597PubMedCrossRefGoogle Scholar
  17. Carr SM, Marshall HD (1991) Detection of intraspecific DNA sequence variation in the mitochondrial cyt b gene of Atlantic cod Gadus morhua by the polymerase chain reaction. Can J Fish Aquat Sci 48:48–52CrossRefGoogle Scholar
  18. Chenoweth SF, Hughes JM, Keenan CP, Lavery S (1998) Concordance between dispersal and mitochondrial gene flow: isolation by distance in a tropical teleost, Lates calcarifer (Australian barramundi). Heredity 80:187–197CrossRefGoogle Scholar
  19. Chikuni S (1971) Groundfish on the seamounts in the North Pacific. Bulletin of the Japanese Society of Fisheries Oceanography 19:1–14 (in Japanese, English translation held by the Fisheries Research Board of Canada.)Google Scholar
  20. Corsini M, Economidis PS (1999) Distribution extension of two Lessepsian migrants found in the marine area of the island of Rhodes (Aegean Sea, Greece). Cybium 23(2):195–199Google Scholar
  21. Corsini Foka M, Kondylatos G, Economidis PS (2004) Occurrence of the Lessepsian species Portunus pelagicus (Crustacea) and Apogon pharaonis (Pisces) in the marine area of Rhodes Island. Mediterr Marine Sci 5(1):83–89Google Scholar
  22. Corsini M, Kondylatos G, Economidis PS (2002) Lessepsian migrant Fistularia commersonii from the Rhodes marine area. J Fish Biol 61:1061–1062CrossRefGoogle Scholar
  23. D’Amato ME, Carvalho GR (2005) Population genetic structure and history of the long-tailed hake, Macruronus magellanicus, in the SW Atlantic as revealed by mtDNA RFLP analysis. ICES J Marine Sci 62:247–255CrossRefGoogle Scholar
  24. Debes PV, Zachos FE, Hanel R (2008) Mitochondrial phylogeography of the European sprat (Sprattus sprattus L., Clupeidae) reveals isolated climatically vulnerable populations in the Mediterranean Sea and range expansion in the northeast Atlantic. Mol Ecol 17(17):3873–3888PubMedCrossRefGoogle Scholar
  25. Dürr J, González JA (2002) Feeding habits of Beryx splendens and Beryx decadactylus (Berycidae) off the Canary Islands. Fish Res 54(3):363–374CrossRefGoogle Scholar
  26. Elliot NG, Smolenski AJ, Ward RD (1994) Allozyme and mitochondrial DNA variation in orange roughly, Hoplostethus atlanticus (Teleostei, Trachichthyidae)—little differentiation between Australian and North Atlantic populations. Mar Biol 119:621–627CrossRefGoogle Scholar
  27. Excoffier LG, Laval SchneiderS (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolut Bioinform Online 1:47–50Google Scholar
  28. Excoffier LG, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  29. Felsenstein J (1989) PHYLIP—phylogeny inference package (version 3.69). Cladistics 5:164–166Google Scholar
  30. Food and Agriculture Organization of the United Nations (2010) FAO yearbook. Fishery and aquaculture statistics, 2008. Rome, FAOGoogle Scholar
  31. Friess C, Sedberry GR (2011a) Genetic evidence for a single stock of the deep-sea teleost Beryx decadactylus in the North Atlantic Ocean as inferred from mtDNA control region analysis. J Fish Biol 78:466–478PubMedCrossRefGoogle Scholar
  32. Friess C, Sedberry GR (2011b) Age, growth, and spawning season of red bream (Beryx decadactylus) off the southeastern United States. Fish Bull 109(1):20–33Google Scholar
  33. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedGoogle Scholar
  34. Gavagnin P, Garibaldi F, Oris Relini L, Palandri G (1992) Cattura di un raro pesce bericiforme nelle acque profonde del Mar Ligure. Oebalia 17(suppl.):57–60Google Scholar
  35. Golani D (1996) The marine ichthyofauna of the Eastern Levant—history, inventory, and characterization. Isr J Zool 42:15–55Google Scholar
  36. Golani D, Orsi-Relini DL, Massuti E, Quignard JP (2002) CIESM Atlas of exotic species in the Mediterranean, vol 1. Fishes (Briand F ed). Monaco CIESM PublishersGoogle Scholar
  37. González JA, Rico V, Lorenzo JM, Reis S, Pajuelo JG, Afonso-Dias M, Mendonça A, Krug HM, Pinho MR (2003) Sex and reproduction of the alfonsino Beryx splendens (Pisces Berycidae) from the Macaronesian archipelagos. J Appl Ichthyol 19(2):104–108CrossRefGoogle Scholar
  38. Grant WS, Bowen BW (1998) Shallow population histories in deep evolutionary lineages of marine fishes: insights from the sardines and anchovies and lessons for conservation. J Heredity 89:415–426CrossRefGoogle Scholar
  39. Harpending HC, Sherry ST, Rogers AR, Stoneking M (1993) The genetic structure of ancient human populations. Curr Anthropol 34:483–496CrossRefGoogle Scholar
  40. Hauser L, Turan C, Carvalho GR (2001) Haplotype frequency distribution and discriminatory power of two mtDNA fragments in a marine pelagic teleost (Atlantic herring, Clupea harengus). Heredity 87:621–630PubMedCrossRefGoogle Scholar
  41. Hellberg ME (1994) Relationships between inferred levels of gene flow and geographic distance in a philopatric coral, Balanophyllia elegans. Evolution 48:1829–1854CrossRefGoogle Scholar
  42. Hillier JK, Watts AB (2007) Global distribution of seamounts from ship-track bathymetry data. Geophys Res Lett 34:L13304.1–L13304.5CrossRefGoogle Scholar
  43. Holsinger KE (2010) Tajima’s D, Fu’s FS, Fay and Wu’s H, and Zeng et al.’s E. http://darwin.eeb.uconn.edu/eeb348/lecturenotes/molevol-tajima.pdf
  44. Hutchinson WF, Carvalho GR, Rogers SI (2001) Marked genetic structuring in localised spawning populations of cod Gadus morhua in the North Sea and adjoining waters, as revealed by microsatellites. Mar Ecol Prog Ser 223:251–260CrossRefGoogle Scholar
  45. Jones AS (1953) The isolation of bacteria nucleic acids using cetyltrimethylammonium bromide (Cetavlon). Biochem Biophys Acta 10:607–612PubMedCrossRefGoogle Scholar
  46. Kanginakudru S, Metta M, Jakati RD, Nagaraju J (2008) Genetic evidence from Indian red jungle fowl corroborates multiple domestication of modern day chicken. BMC Evol Biol 8:174PubMedCrossRefGoogle Scholar
  47. Large P, Hammer C, Bergstad OA, Gordon JDM, Lorance P (2003) Deep-water fisheries of the Northeast Atlantic: II assessment and management approaches. J Northwest Atl Fish Sci 31:151–163Google Scholar
  48. Lehodey P (1994) Les monts sous-marins de Nouvelle-Calédonie et leurs ressources halieutiques. Thèse de doctorat, Université Française du Pacifique, PapeeteGoogle Scholar
  49. Lehodey P, Granperrin R (1996) Influence of temperature and ENSO events on the growth of the deep demersal fish alfonsino, Beryx splendens, off New Caledonia in the western tropical South Pacific Ocean. Deep-Sea Res I 43:49–57CrossRefGoogle Scholar
  50. Lehodey P, Marchal P, Grandperrin R (1994) Modeling the distribution of alfonsino, Beryx splendens, over the seamounts of New Caledonia. Fish Bull 92:748–759Google Scholar
  51. Lehodey P, Grandperrin R, Marchal P (1997) Reproductive biology and ecology of a deep-demersal fish, alfonsino Beryx splendens, over the seamounts off New Caledonia. Mar Biol 128:17–27CrossRefGoogle Scholar
  52. Liu M, Lu ZC, Gao TX, Yanagimoto T, Sakurai Y (2010) Remarkably low mtDNA control-region diversity and shallow population structure in Pacific cod Gadus macrocephalus. J Fish Biol 77(5):1071–1082PubMedCrossRefGoogle Scholar
  53. Lundy CJ, Moran P, Rico C, Milner RS, Hewitt GM (1999) Macrogeographical population differentiation in oceanic environments: a case study of European hake (Merluccius merluccius), a commercially important fish. Mol Ecol 8:1889–1898PubMedCrossRefGoogle Scholar
  54. Lundy CJ, Rico C, Hewitt GM (2000) Temporal and spatial genetic variation in spawning grounds of European hake (Merluccius merluccius) in the Bay of Biscay. Mol Ecol 9:2067–2079PubMedCrossRefGoogle Scholar
  55. Lydeard C, Roe KJ (1997) The phylogenetic utility of the mitochondrial cytochrome b gene for inferring relationships among Actinopterygian fishes. In: Kocher TD, Stepien CA (eds) 1997. Molecular Systematics of Fishes, Academic Press, San Diego, pp 285–303Google Scholar
  56. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27(2):209–220PubMedGoogle Scholar
  57. Martin AP, Humphreys R, Palumbi SR (1992) Population genetic structure of the armourhead, Pseudopentaceros wheeleri, in the North Pacific Ocean: application of the polymerase chain reaction to fisheries populations. Can J Fish Aquat Sci 49:2368–2391Google Scholar
  58. Massey BR, Horn PL (1990) Growth and age structure of alfonsino (Beryx splendens) from the lower east coast, North Island, New Zealand. N Z J Mar Freshw Res 24:121–136CrossRefGoogle Scholar
  59. Maul GE (1981) Berycidae. In: Fischer W, Bianchi G, Scott WB. (eds), Fiches FAO d’Identification des espèces pour les besoins de la pêche Atlantique centre-est. Zones de pêche 34, 47 (en partie), vol. I. FAO, Ottawa, pag varGoogle Scholar
  60. Maul GE (1990) Berycidae. In: Quéro JC, Hureau JC, Karrer C, Post A, Saldanha L (eds) Check-list of the fishes of the Eastern Tropical Atlantic, vol II. UNESCO, Paris, p 626Google Scholar
  61. Miller MP, Bellinger RM, Forsman ED, Haig SM (2006) Effects of historical climate change, habitat connectivity and vicariance on the genetic structure and diversity across the range of the red tree vole (Phenacomys longicaudus). Mol Ecol 15:145–159PubMedCrossRefGoogle Scholar
  62. Mora MS, Lessa EP, Cutrera AP, Kittlein MJ, Vasallo AI (2007) Phylogeographical structure in the subterranean tuco–tuco Ctenomys talarum (Rodentia: Ctenomyidae): contrasting the demographic consequences of regional and habitat specific histories. Mol Ecol 16:3453–3465PubMedCrossRefGoogle Scholar
  63. Mundy BC (1990) Development of larvae and juveniles of the alfonsinos, Beryx splendens and B. decadactylus (Berycidae, Beryciformes). Bull Mar Sci 46:257–273Google Scholar
  64. Myers P, Lundrigan B, Tucker PK (1995) Molecular phylogenetics of oryzomyine rodents: the genus Oligoryzomys. Mol Phyl Evol 4:372–382CrossRefGoogle Scholar
  65. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  66. Nei M, Tajima F (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97:145–163PubMedGoogle Scholar
  67. Nelson JS, Hoddell RJ, Chou LM, Chan WK, Phang VPE (2000) Phylogeographic structure of false clownfish, Amphiprion ocellaris, explained by sea level changes on the Sunda shelf. Mar Biol 137:727–736CrossRefGoogle Scholar
  68. Nesbo CL, Rueness EK, Iversen SA, Skagen DW, Jakobsen KS (2000) Phylogeography and population history of Atlantic mackerel (Scomber scombrus L.): a genealogical approach reveals genetic structuring among the eastern Atlantic stocks. Proc R Soc Lond B 267:281–292CrossRefGoogle Scholar
  69. Nohara K, Takeuchi H, Tsuzaki T, Suzuki N, Tominaga O, Seikai T (2010) Genetic variability and stock structure of red tilefish Branchiostegus japonicus inferred from mtDNA sequence analysis. Fisheries Science 76(1):75–81CrossRefGoogle Scholar
  70. Norris RD (2000) Pelagic species diversity, biogeography, and evolution. Paleobiology 26:236–258CrossRefGoogle Scholar
  71. Orsi Relini L, Palandri G, Garibaldi F, Gavagnin PF (1995) First record of Beryx splendens (Osteichthyes, Berycidae) in the Mediterranean. Histoire naturelle des poissons. Cybium 19(3):317–319Google Scholar
  72. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  73. Palma RE, Rivera-Milla E, Salazar-Bravo J, Torres-Perez F, Pardiñas UFJ, Marquet PA, Spotorno AE, Meynard AP, Yates TL (2005) Phylogeography of Oligoryzomys longicaudatus (Rodentia, Sigmodontinae) in temperate South America. J Mammal 86:191–200CrossRefGoogle Scholar
  74. Palumbi SR (1994) Genetic divergence, reproductive isolation, and marine speciation. A Rev Ecol Syst 25:547–572CrossRefGoogle Scholar
  75. Palumbi SR (2003) Population genetics, demographic connectivity and the design of marine reserves. Ecol Appl 13(1): Supplement S146–S158Google Scholar
  76. Palumbi SR, Grabowsky G, Duda T, Geyer L, Tachino N (1997) Speciation and population genetic structure in tropical Pacific sea urchins. Evolution 51:1506–1517CrossRefGoogle Scholar
  77. Parsons KE (1996) The genetic effects of larval dispersal depend on spatial scale and habitat characteristics. Mar Biol 126:403–414CrossRefGoogle Scholar
  78. Planes S (1993) Genetic differentiation in relation to restricted larval dispersal of the convict surgeonfish Acanthurus triostegus in French Polynesia. Mar Ecol Prog Ser 98:237–246CrossRefGoogle Scholar
  79. Psomadakis PN, Scacco U (2006) Vacchi M (2006) Recent findings of some uncommon fishes from the central Tyrrhenian Sea. Cybium 30(4):297–304Google Scholar
  80. Quéro JC, Dubuit MH, Fonteneau J, Morandeau G, Vayne JJ (1990) Observations ichtyologiques effectuées en 1989. Ann Soc Sci Nat Cha-Mar 7(8): 961–967Google Scholar
  81. Rand DM (1996) Neutrality tests of molecular markers and the connection between DNA polymorphism, demography, and conservation biology. Conserv Biol 10:665–671CrossRefGoogle Scholar
  82. Relini M, Orsi Relini L (1997) The two species of Barracuda (Sphyraenidae) in the western Mediterranean. Cybium 21(2):216–222Google Scholar
  83. Rocha-Olivares A, Rosenblatt RH, Vetter RD (1999) Cryptic species of rockfishes (Sebastes: Scorpaenidae) in the Southern Hemisphere inferred from mitochondrial lineages. J Hered 90:404–411PubMedCrossRefGoogle Scholar
  84. Rogers AD, Gianni M (2010) The implementation of UNGA Resolution 61/105 and 64/72 in the Management of Deep‐Sea Fisheries on the High Seas. A report from the International Programme on the State of the Ocean. http://www.savethehighseas.org/publicdocs/61105-Implemention-finalreport.pdf
  85. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9(3):552–569PubMedGoogle Scholar
  86. Ruzzante DE, Taggart CT, Cook D, Goddard S (1996) Genetic differentiation between inshore and offshore Atlantic cod (Gadus morhua) off Newfoundland: microsatellite variation and antifreeze level. Can J Fish Aquat Sci 53:634–645CrossRefGoogle Scholar
  87. Ruzzante DE, Taggart CT, Cook D (1998) A nuclear basis for shelf- and bank-scale population structure in northwest Atlantic cod (Gadus morhua): labrador to Georges Bank. Mol Ecol 7:1663–1680CrossRefGoogle Scholar
  88. Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis. Ver. 2.000. Genetics and Biometry Lab, Dept. of Anthropology, University of Geneva. http://anthropologie.unige.ch/arlequin/
  89. Schönhuth S, Alvarez Y, Rico V, Gonzalez JA, Santana JI, Gouveia E, Lorenzo JM, Bautista JM (2005) Molecular identification and biometric analysis of Macaronesian archipelago stocks of Beryx splendens. Fish Res 73(3):299–309CrossRefGoogle Scholar
  90. Sedberry GR, Carlin JL, Chapman RW, Eleby B (1996) Population structure in the pan-oceanic wreckfish Polyprion americanus (Teleostei: Polyprionidae), as indicated by mtDNA variation. J Fish Biol 49(Suppl. A):318–329CrossRefGoogle Scholar
  91. Shulman MJ (1998) What can population genetics tell us about dispersal and biogeographic history of coral-reef fishes? Aust J Ecol 23:216–225CrossRefGoogle Scholar
  92. Shulman MJ, Bermingham E (1995) Early life histories, ocean currents, and the population genetics of Caribbean reef fishes. Evolution 49:897–910CrossRefGoogle Scholar
  93. Simonsen KL, Churchill GA, Aquadro CF (1995) Properties of statistical tests of neutrality for DNA polymorphism data. Genetics 141:413–429PubMedGoogle Scholar
  94. Smith PJ, Birley AJ, Janieson A, Bishop CA (1989) Mitochondrial DNA in the Atlantic cod, Gadus morhua: lack of genetic divergence between eastern and western populations. J Fish Biol 34:369–373CrossRefGoogle Scholar
  95. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis. Genetics 123:585–595PubMedGoogle Scholar
  96. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  97. Thornhill DJ, Mahon AR, Norenburg JL, Halanych KM (2008) Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and Parborlasia corrugatus (Lineidae: Nemertea). Mol Ecol 17:5104–5118PubMedCrossRefGoogle Scholar
  98. Todd CD, Lambert WJ, Thorpe JP (1998) The genetic structure of intertidal populations of two species of nudibranch mollusks with planktotrophic and pelagic lecithotrophic larval stages: are pelagic larvae ‘for’ dispersal? J Exp Mar Biol Ecol 228:1–28CrossRefGoogle Scholar
  99. Ward RD, Woodwark M, Skiniski DOF (1994) A comparison of genetic diversity levels in marine, freshwater, and anadromous Fishes. J Fish Biol 44:213–222CrossRefGoogle Scholar
  100. Weber LI, Hartnoll RG, Thorpe JP (2000) Genetic divergence and larval dispersal in two spider crabs (Crustacea: Decapoda). Hydrobiologia 420:211–219CrossRefGoogle Scholar
  101. White TA, Steffanni S, Stamford J, Hoelzel AR (2009) Unexpected panmixia in a long-lived, deep-sea fish with well-defined spawning habitat and relatively low fecundity. Mol Ecol 18(12):2563–2573PubMedCrossRefGoogle Scholar
  102. White TA, Stamford J, Hoelzel AR (2010) Local selection and population structure in a deep-sea fish, the roundnose grenadier (Coryphaenoides rupestris). Mol Ecol 19(2):216–226PubMedCrossRefGoogle Scholar
  103. Wilke T, Davis GM (2000) Intraspecific mitochondrial sequence diversity in Hydrobia ulvae and Hydrobia ventrosa (Hydrobiidae: Rissooidea: Gastropoda): do their different life histories affect biogeographic patterns and gene flow? Biol J Linn Soc 70:89–105CrossRefGoogle Scholar
  104. Williams ST, Benzie JAH (1998) Evidence of a biogeographic break between populations of a high dispersal starfish: Congruent regions within the Indo-West Pacific defined by color morphs, mtDNA, and allozyme data. Evolution 52:87–99CrossRefGoogle Scholar
  105. Won Y, Young CR, Lutz RA, Vrijenhoek RC (2003) Dispersal barriers and isolation among deep-sea mussel populations (Mytilidae: Bathymodiolus) from eastern Pacific hydrothermal vents. Mol Ecol 12:169–184PubMedCrossRefGoogle Scholar
  106. Zardoya R, Castilho R, Grande C, Favre-Krey L, Caetano S, Marcato S, Krey G, Paternello T (2004) Differential population structuring of two closely related fish species, the mackerel (Scomber scombrus) and the chub mackerel (Scomber japonicus), in the Mediterranean Sea. Mol Ecol 13:1785–1798PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Lauriana Lévy-Hartmann
    • 1
    • 2
  • Valérie Roussel
    • 2
  • Yves Letourneur
    • 1
  • Daniel Y. Sellos
    • 2
  1. 1.Laboratoire Insulaire du Vivant et de l’EnvironnementUniversité de la Nouvelle-CalédonieNouméa CedexFrance
  2. 2.Département «Milieux et Peuplements Aquatiques», Muséum National d’Histoire NaturelleUMR 7208 MNHN/UPMC/CNRS, «Biologie des Organismes Marins et Ecosystèmes»Concarneau CedexFrance

Personalised recommendations