Skip to main content
Log in

Evolutionary dynamics of 5S rDNA location in acridid grasshoppers and its relationship with H3 histone gene and 45S rDNA location

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

We analyze the chromosomal location of 5S rDNA clusters in 29 species of grasshoppers belonging to the family Acrididae. There was extensive variation among species for the number and location of 5S rDNA sites. Out of 148 sites detected, 75% were proximally located, 21.6% were interstitial, and only 3.4% were distal. The number of 5S rDNA sites per species varied from a single chromosome pair (in six species) to all chromosome pairs (in five species), with a range of intermediate situations. Thirteen chromosomes from eight species carried two 5S rDNA clusters. At intraspecific level, differences among populations were detected in Eyprepocnemis plorans, and some heteromorphisms have also been observed in some species. Double FISH for 5S rDNA and H3 histone gene DNA, performed on 17 of these 29 species, revealed that both markers are sometimes placed in a same chromosome but at different location, whereas they appeared to co-localize in five species (Calliptamus barbarus, Heteracris adpersa, Aiolopus strepens, Oedipoda charpentieri and O. coerulescens). Double fiber-FISH in A. strepens and O. coerulescens showed that the two DNAs are closely interspersed with variable relative amounts of both classes of DNA. Finally, no correlation was observed between the number of 5S and 45S rDNA clusters in 23 species where this information was available. These results are discussed in the light of possible mechanisms of spread that led to the extensive variation in the number of clusters observed for both rDNA types in acridid grasshoppers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams SP, Leitch IJ, Bennett MD, Chase MW, Leitch AR (2000) Ribosomal DNA evolution and phylogeny in Aloe (Asphodelaceae). Am J Bot 87:1578–1583

    Article  PubMed  CAS  Google Scholar 

  • Andrews MT, Vaughn JC, Perry BA, Bagshaw JC (1987) Interspersion of histone and 5S RNA genes in Artemia. Gene 51:61–67

    Article  PubMed  CAS  Google Scholar 

  • Averbeck KT, Eickbush TH (2005) Monitoring the mode and tempo of concerted evolution in the Drosophila melanogaster rDNA locus. Genetics 171:1837–1846

    Article  PubMed  CAS  Google Scholar 

  • Barzotti R, Pelliccia F, Bucciarelli E, Rocchi A (2000) Organization, nucleotide sequence, and chromosomal mapping of a tandemly repeated unit containing the four core histone genes and a 5S rRNA gene in an isopod crustacean species. Genome 43:341–345

    Article  PubMed  CAS  Google Scholar 

  • Belyayev A, Raskina O, Nevo E (2001) Chromosomal distribution of reverse transcriptase-containing retroelements in two Triticeae species. Chromosom Res 9:129–136

    Article  CAS  Google Scholar 

  • Belyayev A, Raskina O, Nevo E (2005) Variability of Ty3-gypsy retrotransposons chromosomal distribution in populations of two wild Triticeae species. Cytogenet Genome Res 109:43–50

    Article  PubMed  CAS  Google Scholar 

  • Cabral-de-Mello DC, Moura RC, Martins C (2010) Chromosomal mapping of repetitive DNAs in the beetle Dichotomius geminatus provides the first evidence for an association of 5S rRNA and histone H3 genes in insects, and repetitive DNA similarity between the B chromosome and A complement. Heredity 104:393–400

    Article  PubMed  CAS  Google Scholar 

  • Cabral-de-Mello DC, Martins C, Souza MJ, Moura RC (2011a) Cytogenetic mapping of 5S and 18S rRNAs and H3 histone genes in four ancient Proscopiidae grasshopper species: contribution to understanding the evolutionary dynamics of multigene families. Cytogenet Genome Res 132:89–93

    Article  PubMed  CAS  Google Scholar 

  • Cabral-de-Mello DC, Moura RC, Martins C (2011b) Cytogenetic mapping of rRNAs and histone H3 genes in 14 species of Dichotomius (Coleoptera, Scarabaeidae, Scarabaeinae) beetles. Cytogenet Genome Res 134:127–135

    Article  PubMed  CAS  Google Scholar 

  • Cabrero J, Camacho JP (2008) Location and expression of ribosomal RNA genes in grasshoppers: Abundance of silent and cryptic loci. Chromosom Res 16:595–607

    Article  CAS  Google Scholar 

  • Cabrero J, Bakkali M, Bugrov A et al (2003) Multiregional origin of B chromosomes in the grasshopper Eyprepocnemis plorans. Chromosoma 112:207–211

    Article  PubMed  CAS  Google Scholar 

  • Cabrero J, López-León MD, Teruel M, Camacho JP (2009) Chromossome mapping of H3 and H4 histone gene clusters in 35 species of acridid grasshoppers. Chromosome Res 17:397–404

    Article  PubMed  CAS  Google Scholar 

  • Cai Q, Zhang DM, Liu ZL, Wang XR (2006) Chromosomal localization of 5S and 18S rDNA in five species of subgenus Strobus and their implications for genome evolution of Pinus. Ann Bot 97:715–722

    Article  PubMed  CAS  Google Scholar 

  • Camacho JPM, Cabrero J, Viseras E, López-León MD, Navas-Castillo J, Alché JD (1991) G-Banding in two species of grasshopper and its relationship to C, N, and fluorescence banding techniques. Genome 34:638–643

    Article  Google Scholar 

  • Castro J, Rodriguez S, Pardo BG, Sánchez L, Martínez P (2001) Population analysis of an unusual NOR-site polymorphism in brown trout (Salmo trutta L.). Heredity 86:291–302

    Article  PubMed  CAS  Google Scholar 

  • Cioffi MB, Martins C, Bertollo LAC (2010) Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol Biol 10:271

    Article  PubMed  Google Scholar 

  • Cohen S, Menut S, Mechali M (1999) Regulated formation of extrachromosomal circular DNA molecules during development in Xenopus laevis. Mol Cell Biol 19:6682–6689

    PubMed  CAS  Google Scholar 

  • Cohen S, Yacobi K, Segal D (2003) Extrachromosomal circular DNA of tandemly repeated genomic sequences in Drosophila. Genome Res 13:1133–1145

    Article  PubMed  CAS  Google Scholar 

  • Cohen S, Houben A, Segal D (2008) Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. Plant J 53:1027–1034

    Article  PubMed  CAS  Google Scholar 

  • Cohen S, Agmon N, Sobol O, Segal D (2010) Extra chromosomal circles of satellite repeats and 5S ribosomal DNA in human cells. Mobile DNA 1:11

    Article  PubMed  Google Scholar 

  • Colomba MS, Vitturi R, Castriota L, Bertoni A, Libertini A (2002) FISH mapping of 18S 28S and 5S ribosomal DNA, (GATA) n and (TTAGGG) n telomeric repeats in the periwinkle Melarhaphe neritoides (Prosobranchia, Gastropoda, Caenogastropoda). Heredity 88:381–384

    Article  PubMed  CAS  Google Scholar 

  • Contreras D, Chapco W (2006) Molecular phylogenetic evidence for multiple dispersal events in gomphocerine grasshoppers. J Orthop Res 15:91–98

    Article  Google Scholar 

  • Cruces J, Díaz-Guerra M, Gil I, Renart J (1989) The 5S rRNA-histone repeat in the crustacean Artemia: structure, polymorphism and variation of the 5S rRNA segment in different populations. Nucleic Acids Res 17:6283–6297

    Article  PubMed  CAS  Google Scholar 

  • Datson PM, Murray BG (2006) Ribosomal DNA locus evolution in Nemesia: transposition rather than structural rearrangement as the key mechanism? Chromosom Res 14:845–857

    Article  CAS  Google Scholar 

  • Degroote F, Pont G, Micard D, Picard G (1989) Extrachromosomal circular DNAs in Drosophila melanogaster: comparison between embryos and Kc0% cells. Chromosoma 98:201–206

    Article  PubMed  CAS  Google Scholar 

  • Descamps M (1973) Révision des Eumastacoidea aux échelons des familles et des sous-familles (genitalia, répartition, phylogénie). Acrida 2:161–298

    Google Scholar 

  • Drouin G, Moniz de Sá M (1995) The concerted evolution of 5S ribosomal genes linked to the repeated units of other multigene families. Mol Biol Evol 12:481–493

    PubMed  CAS  Google Scholar 

  • Drouin G, Hofman JD, Doolittle WF (1987) Unusual ribosomal RNA gene organization in copepods of the genus Calanus. J Mol Biol 196:943–946

    Article  PubMed  CAS  Google Scholar 

  • Drouin G, Sévigni J-M, McLares IA, Hofman JD, Doolittle WF (1992) Variable arrangement of 5S ribosomal genes within the ribosomal DNA repeats of arthropods. Mol Biol Evol 9:826–835

    PubMed  CAS  Google Scholar 

  • Dubcovsky J, Dvorak J (1995) Ribosomal RNA multigene loci: nomads of the Triticeae genomes. Genetics 140:1367–1377

    PubMed  CAS  Google Scholar 

  • Eickbush DG, Eickbush TH (2003) Transcription of endogenous and exogenous R2 elements in the rRNA gene locus of Drosophila melanogaster. Mol Cell Biol 23:3825–3836

    Article  PubMed  CAS  Google Scholar 

  • Eirín-López JM, Ruiz MF, González-Tizón AM, Martínez A, Sánchez L, Méndez J (2004) Molecular evolutionary characterization of the mussel Mytilus histone multigene family: first record of a tandemly repeated unit of five histone genes containing an H1 subtype with ‘‘orphon’’ features. J Mol Evol 58:131–144

    Article  PubMed  Google Scholar 

  • Frederiksen S, Cao H, Lomholt B, Levan G, Hallemberg C (1997) The rat 5S rRNA bona fide gene repeat maps to chromosome 19q12 → qter and the pseudogene repeat maps to 12q12. Cytogenet Cell Genet 76:101–106

    Article  PubMed  CAS  Google Scholar 

  • Gillespie JJ, Johnston JS, Cannone JJ, Gutell RR (2006) Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of Apis mellifera (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. Insect Mol Biol 15:657–686

    Article  PubMed  CAS  Google Scholar 

  • Gornung E, Kartavenko T, Kurchashova S, Kireev I, Fais D (2005) Physical mapping of the 5S rRNA in the common sea urchin, Paracentrotus lividus (Echinodermata: Echinoidea), by in situ hybridization. Cytogenet Genome Res 111:186c

    Article  Google Scholar 

  • Graves RA, Marzluff WF, Giebelhaus DH, Schultz GA (1985) Quantitative and qualitative changes in histone gene expression during early mouse embryo development. Proc Natl Acad Sci USA 82:5685–5689

    Article  PubMed  CAS  Google Scholar 

  • Hankeln T, Keyl HG, Ross R, Schmidt ER (1993) Evolution of histone gene loci in chironomid midges. Genome 36:852–862

    Article  PubMed  CAS  Google Scholar 

  • Hanson RE, Islam-Faridi MN, Percival EA, Crane CF, Ji Y, McKnight TD et al (1996) Distribution of 5S and 18S–28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and its putative diploid ancestors. Chromosoma 105:55–61

    Article  PubMed  CAS  Google Scholar 

  • Henderson AS, Warburton D, Atwood KC (1972) Location of ribosomal DNA in the human chromosome complement. Proc Natl Acad Sci USA 69:3394–3398

    Article  PubMed  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Chang W, Antonius K, Sela H, Peleg O et al (2008) Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci USA 105:5833–5838

    Article  PubMed  CAS  Google Scholar 

  • Long EO, Dawid ID (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764

    Article  PubMed  CAS  Google Scholar 

  • López-León MD, Cabrero J, Camacho JPM (1999) Unusually high amount of inactive ribosomal DNA in the grasshopper Stauroderus scalaris. Chromosom Res 7:83–88

    Article  Google Scholar 

  • Loreto V, Cabrero J, López-León MD, Camacho JP, Souza MJ (2008) Possible autosomal origin of macro B chromosomes in two grasshopper species. Chromosom Res 16:233–241

    Article  CAS  Google Scholar 

  • Lucchini S, Nardi I, Barsacchi G, Batistoni R, Andronico F (1993) Molecular cytogenetics of the ribosomal (18S + 28S and 5S). DNA loci in primitive and advance urodele amphibians. Genome 36:762–773

    Article  PubMed  CAS  Google Scholar 

  • Mandrioli M, Colomba MS, Vitturi R (2000) Chromosomal analysis of repeated DNAs in the rainbow wrasse Coris julis (Pisces Labridae). Genetica 108:191–195

    Article  PubMed  CAS  Google Scholar 

  • Martínez JL, Morán P, García Vázquez E, Pendás AM (1996) Chromosome localization of the major and 5S rRNA genes in the European eel (Anguilla anguilla). Cytogenet Cell Genet 73:149–152

    Article  PubMed  Google Scholar 

  • Martínez-Navarro EM, Serrano J, Galián J (2004) Chromosome evolution in ground beetles: localization of the rDNA loci in the tribe Harpalini (Coleoptera, Carabidae). J Zool Syst Evol Res 42:38–43

    Article  Google Scholar 

  • Martíns C, Wasko AP (2004) Organization and evolution of 5S ribosomal DNA in the fish genome. In: Williams CR (ed) Focus on genome research. Nova Science Publishers, Hauppauge, pp 289–318

    Google Scholar 

  • Matt S, Flook PQ, Rowel CHF (2008) A partial molecular phylogeny of the Eumastacoidea s. lat. (Orthoptera, Caelifera). J Orthop Res 17:43–55

    Article  Google Scholar 

  • Maxson R, Cohn R, Kedes L (1983) Expression and organization of histone genes. Ann Rev Gen 17:239–277

    Article  CAS  Google Scholar 

  • Mellink CHM, Bosma AA, Haan NA, Zijlstra C (1996) Physical localization of 5S rRNA genes in the pig by fluorescence in situ hybridization. Hereditas 124:95–97

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Rooney AP (2005) Concerted and birth-and-death evolution of multigene families. Annu Rev Genet 39:121–152

    Article  PubMed  CAS  Google Scholar 

  • Nguyen P, Sahara K, Yoshido A, Marec F (2010) Evolutionary dynamics of rDNA clusters on chromosomes of moths and butterflies (Lepidoptera). Genetica 138:343–354

    Article  PubMed  CAS  Google Scholar 

  • Pedrosa-Harand A, Almeida CCS, Mosiolek M, Blair MW, Schweizer D, Guerra M (2006) Extensive ribosomal DNA amplification during Andean common vean (Phaseolus vulgaris L.) evolution. Theor Appl Genet 112:924–933

    Article  PubMed  CAS  Google Scholar 

  • Pendás AM, Morán P, García-Vázquez E (1994) Organization and chromosomal location of the major histone cluster in brown trout, Atlantic salmon and rainbow trout. Chromosoma 103:147–152

    Article  PubMed  Google Scholar 

  • Penton EH, Crease TJ (2004) Evolution of the transposable element pokey in the ribosomal DNA of species in the subgenus Daphnia (Crustacea: Cladocera). Mol Biol Evol 21:1727–1739

    Article  PubMed  CAS  Google Scholar 

  • Pisano E, Ghigliotti L (2009) Ribosomal genes in notothenioid fishes: focus on the chromosomal organisation. Mar Genomics 2:75–80

    Article  Google Scholar 

  • Pont G, Degroote F, Picard G (1987) Some extrachromosomal circular DNAs from Drosophila embryos are homologous to tandemly repeated genes. J Mol Biol 195:447–451

    Article  PubMed  CAS  Google Scholar 

  • Ranz JM, González J, Casals F, Ruiz A (2003) Low occurrence of gene transposition events during the evolution of the genus Drosophila. Evolution 57:1325–1335

    PubMed  CAS  Google Scholar 

  • Raskina O, Belyayev A, Nevo E (2004) Activity of the En/Spm -like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosom Res 12:153–161

    Article  CAS  Google Scholar 

  • Raskina O, Barber JC, Nevo E, Belyayev A (2008) Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet Genome Res 120:351–357

    Article  PubMed  CAS  Google Scholar 

  • Rezende-Teixeira P, Siviero F, Rosa MC, Machado-Santelli GM (2009) The R2 mobile element of Rhynchosciara americana: molecular, cytological and dynamic aspects. Chromosom Res 17:455–467

    Article  CAS  Google Scholar 

  • Sánchez-Gea JF, Serrano J, Galián J (2000) Variability in rDNA loci in Iberian species of the genus Zabrus (Coleoptera: Carabidae) detected by fluorescence in situ hybridization. Genome 43:22–28

    PubMed  Google Scholar 

  • Schmid M, Vitelli L, Batistoni R (1987) Chromosome banding in Amphibia. IV. Constitutive heterochromatin, nucleolus organizers, 18S + 28S and 5S ribosomal RNA genes in Ascaphidae, Pipidae, Discoglossidae and Pelobatidae. Chromosoma 95:271–284

    Article  PubMed  CAS  Google Scholar 

  • Schubert I (1984) Mobile nucleolus organizing regions (NORs) in Allium (Liliaceae S-Lat)-inferences from the specifity of silver staining. Plant Syst Evol 144:291–305

    Article  Google Scholar 

  • Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148

    Article  Google Scholar 

  • Shishido R, Sano Y, Fukui K (2000) Ribosomal DNAs: an exception to the conservation of gene order in rice genomes. Mol Gen Genet 263:586–591

    Article  PubMed  CAS  Google Scholar 

  • Srikulnath K, Matsubara K, Uno Y, Thongpan A, Suputtitada S, Apisitwanich S et al (2009) Karyological characterization of the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Squamata) by molecular cytogenetic approach. Cytogenet Genome Res 125:213–223

    Article  PubMed  CAS  Google Scholar 

  • Steffensen DM, Duffey P (1974) Localization of 5S ribosomal DNA genes on human chromosome 1. Nature 252:741–743

    Article  PubMed  CAS  Google Scholar 

  • Teruel M, Cabrero J, Perfectti F, Camacho JPM (2010) B chromosome ancestry revealed by histone genes in the migratory locust. Chromosoma 119:217–225

    Article  PubMed  CAS  Google Scholar 

  • Tripputi P, Emanuel BS, Croce CM, Green LG, Stein GS, Stein JL (1986) Human histone genes map to multiple chromosomes. Proc Natl Acad Sci USA 83:3185–3188

    Article  PubMed  CAS  Google Scholar 

  • Turner PC, Bagenal EBD, Vlad MT, Woodland HR (1988) The organization and expression of histone genes from Xenopus borealis. Nucl Acids Res 16:3471–3485

    Article  PubMed  CAS  Google Scholar 

  • Vahidi H, Curran J, Nelson DW, Webster JM, Mcclure MA, Honda BM (1988) Unusual sequences, homologous to 5s RNA, in ribosomal DNA repeats of the nematode Meloidogyne arenaria. J Mol Evol 27:222–227

    Article  PubMed  CAS  Google Scholar 

  • Vitelli L, Batistoni R, Andronico F, Nardi I, Barsacchi-Pilone G (1982) Chromosomal localization of 18S + 28S and 5S ribosomal RNA genes in evolutionary divergent anuran amphibians. Chromosoma 84:475–491

    Article  PubMed  CAS  Google Scholar 

  • Vitturi R, Colomba M, Mandrioli M, Pirrone AM (2002) rDNA (18S–28S and 5S) co-localization and linkage between ribosomal genes and (TTAGGG)n telomeric sequence in the earthworm Octodrilus complanatus (Annelida: Oligochaeta: Lumbricidae) revealed by single- and double-colour FISH. J Hered 93:279–282

    Article  PubMed  CAS  Google Scholar 

  • Vitturi R, Sineo L, Volpe N, Lannino A, Colomba M (2004) Repetitive DNAs in the slug Milax nigricans: association of ribosomal (18S–28S and 5S rDNA) and (TTAGGG)n telomeric sequences) in the slug M nigricans (Mollusca: Gastropoda: Pulmonata). Micron 35:255–260

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Guo X (2004) Chromosomal rearrangement in Pectinidae revealed by rRNA loci and implications for bivalve evolution. Biol Bull 207:247–256

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Bao Z, Wang S, Huang X, Hu J (2007) Chromosome rearrangements in Pectinidae (Bivalvia: Pteriomorphia) implied based on chromosomal localization of histone H3 gene in four scallops. Genetica 130:193–198

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Spanish Ministerio de Ciencia y Tecnología (CGL2009-11917) and Plan Andaluz de Investigación (CVI-6649), and was partially performed by FEDER funds. The scientific scholarship of Cabral-de-Mello DC was granted by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pedro M. Camacho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cabral-de-Mello, D.C., Cabrero, J., López-León, M.D. et al. Evolutionary dynamics of 5S rDNA location in acridid grasshoppers and its relationship with H3 histone gene and 45S rDNA location. Genetica 139, 921–931 (2011). https://doi.org/10.1007/s10709-011-9596-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-011-9596-7

Keywords

Navigation